
 

Cronfa -  Swansea University Open Access Repository

   

_____________________________________________________________

   
This is an author produced version of a paper published in :

European Journal of Applied Physiology

                                               

   
Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa26150

_____________________________________________________________

 
Paper:

Winlove, M., Jones, A. & Welsman, J. (2009).  Influence of training status and exercise modality on pulmonary O2

uptake kinetics in pre-pubertal girls. European Journal of Applied Physiology, 108(6), 1169-1179.

http://dx.doi.org/10.1007/s00421-009-1320-2

 

 

 

 

 

 

 

 

_____________________________________________________________
  
This article is brought to you by Swansea University. Any person downloading material is agreeing to abide by the

terms of the repository licence. Authors are personally responsible for adhering to publisher restrictions or conditions.

When uploading content they are required to comply with their publisher agreement and the SHERPA RoMEO

database to judge whether or not it is copyright safe to add this version of the paper to this repository. 

http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/ 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cronfa at Swansea University

https://core.ac.uk/display/78858095?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://cronfa.swan.ac.uk/Record/cronfa26150
http://dx.doi.org/10.1007/s00421-009-1320-2
http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/ 


 

1 

Influence of training status and exercise modality on pulmonary 

O2 uptake kinetics in pre-pubertal girls 

 

Melitta A. Winlove
1
, Andrew M. Jones

1
 and Joanne R. Welsman

1 

 

1
 School of Sport and Health Sciences, St. Luke’s Campus, University of Exeter, 

Heavitree Road, Exeter EX1 2LU, United Kingdom 

 

Correspondence to: 

Melitta A. Winlove 

School of Sport and Health Sciences 

St. Luke’s Campus 

University of Exeter 

Heavitree Road 

Exeter 

EX1 2LU 

United Kingdom 

M.A.Winlove@exeter.ac.uk 



2 

Abstract 

 

The limited available evidence suggests that endurance training does not influence the 

pulmonary oxygen uptake (V O2) kinetics of pre-pubertal children. We hypothesised 

that, in young trained swimmers, training status related adaptations in the V O2 and 

heart rate (HR) kinetics would be more evident during upper body (arm-cranking) 

than during leg cycling exercise. Eight swim-trained (T; 11.4 ± 0.7 years) and eight 

untrained (UT; 11.5 ± 0.6 years) girls completed repeated bouts of constant-work-rate 

cycling and upper body exercise at 40% of the difference between the gas exchange 

threshold and peak V O2. The phase II V O2 time constant was significantly shorter in 

the trained girls during upper body exercise (T: 25 ± 3 vs. UT: 37 ± 6 s; P < 0.01) but 

no training status effect was evident in the cycle response (T: 25 ± 5 vs. UT: 25 ± 7 s). 

The V O2 slow component amplitude was not affected by training status or exercise 

modality. The time constant of the HR response was significantly faster in trained 

girls during both cycle (T: 31 ± 11 vs. UT: 47 ± 9 s; P < 0.01) and upper body (T: 33 

± 8 vs. UT: 43 ± 4 s; P < 0.01) exercise. This study demonstrates for the first time that 

swim-training status influences upper body V O2 kinetics in pre-pubertal children, but 

that cycle ergometry responses are insensitive to such differences. 
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Introduction 

 

Pulmonary oxygen uptake (V O2) kinetics provide a useful, non-invasive assessment 

of the integrated capacity of the organism to transport and utilize O2 to support the 

increased rate of energy turnover in the contracting myocytes (Whipp and Ward 

1990). In adults, the influence of factors such as exercise intensity and exercise 

modality on V O2 kinetics have been well documented (for a detailed review see: 

Jones and Poole 2005). Exercise training is known to be a potent stimulus to V O2 

kinetics in this population, resulting in reductions in both the phase II time constant 

(τ) and the amplitude of the subsequent V O2 ‘slow component’ (Bailey et al. 2009; 

Berger et al. 2006; Carter et al. 2000; Casaburi et al. 1987; Jones and Koppo 2005; 

Koppo et al. 2004; Phillips et al. 1995; Powers et al. 1985). 

 

The V O2 kinetic response in children has been less comprehensively described and 

the influence of endurance training on V O2 kinetics in this population is unclear 

(Fawkner and Armstrong 2003). The available data suggest that training neither 

reduces τ (Cleuziou et al. 2002; Obert et al. 2000) nor reduces the amplitude of the 

V O2 slow component (Obert et al. 2000) in children. This apparent insensitivity to 

training clearly contrasts with findings in adults (e.g. Carter et al. 2000; Cleuziou et 

al. 2003; Koppo et al. 2004; Norris and Petersen 1998; Phillips et al. 1995). However, 

it is possible that this is a consequence of methodological limitations in paediatric 

studies such as the use of only single exercise transition to characterize V O2 kinetics, 

the prescription of exercise intensity as a fraction of the peak V O2, the use of mixed 

sex cohorts, or the employment of non-specific ergometry. The relatively small V O2 

response amplitudes and relatively large inter-breath variability in V O2 in children 

requires that several repeat transitions are performed for V O2 kinetics to be 

confidently characterized (Fawkner and Armstrong 2007). Moreover, the relatively 

high inter-individual variability in the fraction of peak V O2 at which the gas exchange 

threshold (GET) occurs in children compared to adults (Fawkner and Armstrong 

2007) means that it is important to consider both the GET and the peak V O2 when 

attempting to standardise the exercise intensity domain in which participants are 

exercising. There are suggestions that boys and girls exhibit subtle differences in V O2 
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kinetics, with boys suggested to exhibit fasterV O2 kinetics and a smaller slow 

component amplitude (Fawkner and Armstrong 2004c). Therefore the analysis of both 

sexes together might be inappropriate. Another explanation for the reported 

insensitivity of children to training might be that some previous studies utilized non-

specific testing modalities. Previous studies have all involved investigation of the 

effects of swimming training on V O2 kinetics during cycle ergometer exercise 

(Cleuziou et al. 2002; Obert et al. 2000). Considering the large contribution of the 

upper body to swimming (Ogita et al. 1996), a test modality such as upper body 

ergometry, which at least demonstrates a commonality of muscles exercised, might be 

more likely to demonstrate training influences on the physiological responses to 

exercise.  

 

The purpose of this cross-sectional study was to examine the influence of training 

status and exercise modality on the V O2 and HR kinetics of pre- and early-pubertal 

girls during heavy-intensity exercise. We hypothesized that the V O2 and HR kinetics 

would be faster and that the V O2 slow component amplitude would be smaller in 

trained swimmers compared to an age-matched untrained control group. We also 

hypothesized, given the large contribution of the upper body to swimming, that 

training status-related differences would be more evident during upper body than 

during cycle ergometer exercise.  

 

Methods 

 

Participants 

 

Eight endurance trained (T) girls and 8 untrained (UT) girls aged 10-12 years 

participated in this study. The T group, all competitive swimmers with a mean 

training volume of 8 (± 2.5) hours/week, were recruited from a local swimming club. 

The UT group comprised volunteers from local schools. Sexual maturity was assessed 

by self-report using the indices of pubic hair described by Tanner (1962). Age to peak 

height velocity was estimated to provide an additional indicator of physical maturity 

according to the equations of Mirwald et al. (2002) which are based on the 
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measurement of standing and seated height, weight, and date of birth as described 

below. 

 

An anthropometrical evaluation was performed before the first test for all participants. 

Standing and seated height were measured to 0.1 cm using a Holtain stadiometer 

(Holtain, Crymych, Dyfed, UK) and body mass determined using Avery beam 

balance scales to 0.05 kg (Avery, Birmingham, UK). Skinfold thickness was assessed 

three times at four sites around the body (bicep, triceps, subscapular and supra-iliac 

crest) by the same researcher for all participants using Harpenden callipers (Baty 

International, Burgess Hill, UK), accurate to the nearest 0.2mm. The average of the 

three measurements was taken.  

 

Participants were asked to arrive at the laboratory in a rested and fully hydrated state, 

at least 3 hours postprandial and to refrain from consuming caffeinated drinks in the 6 

hours prior to the test. The methods employed during this study were approved by the 

institutional research ethics committee and all participants and their parents/guardians 

gave written informed consent and assent, respectively. 

 

Measurements of peak V O2 and GET 

 

On the first two visits to the laboratory, exercise mode-specific peak V O2 and gas 

exchange threshold (GET) were determined using an incremental ramp test to 

voluntary exhaustion on both cycle (Lode Excalibur, Netherlands)  and upper body 

(Lode Angio, Netherlands) ergometers. Gas exchange variables (Metalyser 3B 

Cortex, Biophysik, Leipzig, Germany) and heart rate (Polar S610, Polar Electro Oy, 

Kempele, Finland) were measured on a breath-by-breath basis and displayed online. 

Prior to each test the gas analyser was calibrated using gases of known concentration 

and the turbine volume transducer was calibrated using a 3-litre syringe (Hans 

Rudolph, Kansas City, MO). The delay in the capillary gas transit and analyser rise 

time were accounted for relative to the volume signal, thereby time aligning the 

concentration and volume signals. The handle bar height, seat height and crank length 

(cycle ergometer) and electrically controlled seat height and distance (upper body 
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ergometer) were adapted to suit each child and the values recorded so they could be 

replicated throughout the testing series.  

 

After a three minute warm-up consisting of unloaded pedalling or arm cranking, the 

resistance increased by 12 W∙min
-1

 and 5 W∙min
-1

 for cycle and upper body exercise, 

respectively, to attain a test of ~8-12 minutes in duration. Participants were instructed 

to maintain a cadence between 70 and 50 rpm on the cycle and upper body ergometer, 

respectively. Maximal tests were considered to have been achieved if in addition to 

subjective indications such as sweating, hyperpnoea and facial flushing, the 

respiratory exchange ratio (RER) was > 1.0 and there was a consistent reduction in 

cadence despite strong verbal encouragement. The data were interpolated to 1-s 

intervals and peak V O2 was taken as the highest 10-s stationary average during the 

test. The GET was determined by the V-slope method (Beaver et al. 1986) as the 

point at which carbon dioxide production began to increase disproportionately to V O2 

as identified using purpose designed software developed using LabVIEW (National 

Instruments, Newbury, UK).  

 

Constant work rate tests 

 

The participants returned to the laboratory on a number of other occasions to 

complete step-change exercise tests on the upper body and cycle ergometers. Where 

multiple tests were performed on the same day, at least 1 hour separated the tests and 

the tests were ordered such that the first test involved a smaller muscle mass (upper 

body), thereby resulting in a smaller metabolic perturbation and faster recovery. On 

average, 4 cycle and 7 upper body transitions were completed, dependent on the 

number of transitions required to obtain 95% confidence intervals of < 4 s for cycling 

or < 4.5 s for upper body exercise. All constant-work-rate tests consisted of 4 minutes 

of unloaded pedalling or cranking followed instantaneously by a transition to a work 

rate extrapolated to require 40% of the difference between the GET and peak V O2 

(40%∆) for 8 minutes. On completion, the work rate instantaneously returned to no 

load and the participants pedalled or cranked for a further 6 minutes. Throughout the 

cycle ergometer and upper body tests, cadences of 70 ± 5 rpm and 50 ± 5 rpm were 

maintained respectively. Fingertip blood samples were taken 1 minute after 
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completion of the loaded phase and assayed for blood lactate concentration (YSI 

1500, Yellow Springs Instruments, Yellow Springs, OH). 

 

V O2 Kinetics Analysis 

 

Initially, the breath-by-breath responses to each transition were examined to remove 

any errant breaths caused by coughing, swallowing, sighing etc using a 5 s moving 

average to identify points lying in excess of 4 SD from the local mean.  Subsequently, 

each transition was interpolated to 1 s intervals, time aligned to the start of exercise 

and averaged. 

 

To remove the influence of phase I on analysis of the subsequent response, the first 15 

s of data were ignored. A single exponential model with a time delay (Eq.1) was then 

applied to the averaged response and parameters and their 95% confidence intervals 

determined by least squares linear regression analysis (Graphpad Prism, Graphpad 

Software, San Diego, CA). 

 

  11 /

1)(2 1





t

t eAOV    (Eq.1) 

 

where ∆V O2 is the increase in V O2 at time t above the baseline value (calculated as 

the mean V O2 from the first 45 seconds of the last minute of baseline pedalling), and 

A1, δ1 and τ1 are the primary component amplitude, time delay and time constant, 

respectively.  

 

The fitting window was constrained to exclude all data after the visually determined 

onset of the V O2 slow component. This approach therefore avoids any possible 

influence of arbitrarily parameterizing the slow component. The onset of the V O2 

slow component was determined using purpose designed LabVIEW software which 

iteratively fits a mono-exponential function to the V O2 data until the window 

encompasses the entire response. The resulting phase II time constants are plotted 

against time and the onset of the V O2 slow component identified as the point at which 

the phase II time constant consistently deviates from the previously “flat” profile 
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(Fawkner and Armstrong 2004b). The amplitude of the V O2 slow component was 

subsequently determined by calculating the difference between the end exercise V O2 

and the primary amplitude plus baseline V O2. This was expressed both in absolute 

terms and relative to end exercise V O2. 

 

HR Kinetics Analysis 

 

As with the V O2 responses, the HR responses to each transition were interpolated to 1 

second intervals, time aligned and averaged to produce a single data set. The resulting 

data set was fit with a single exponential with no time delay (Eq.2) with the fitting 

window starting at t = 0 and constrained to the onset of the V O2 slow component.  

 

 )/(

1)(
11
t

t eAHR


     (Eq.2) 

where ∆HR is the increase in heart rate at time t above the baseline (calculated as the 

mean heart rate from the first 45 seconds of the last minute of baseline pedalling), and 

A1 and τ1 are the primary component amplitude and time constant, respectively.  

 

Statistics 

 

The allometric relationship between body mass and peak V O2 was determined using 

analysis of covariance (ANCOVA) on log transformed data (Welsman and Armstrong 

2000). From the values of the regression slopes (allometric exponents) confirmed as 

common to all groups, power function ratios (Y/X
b
) were computed. A two way 

ANOVA with repeated measures was used to analyse training status and exercise 

mode effects. Subsequent independent or paired samples t-tests with a Bonferonni 

correction were employed as appropriate to identify the location of significant effects. 

All data are presented as means ± SD. Statistical significance was accepted when P < 

0.05.  

 

Results 
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The physical characteristics and peak responses of the participants are presented in 

Tables 1 and 2. All children reported a maturity level of 1 or 2, indicting the study 

population was pre- or early-pubertal. Both groups had equal numbers of maturity 

stage 1 and 2 participants. Responses to the peak tests on each mode did not differ 

between groups before or after allometric scalling (P > 0.05). Peak values achieved on 

the cycle ergometer were significantly higher than the respective values achieved on 

the upper body ergometer within each group (P < 0.005), with the exception of peak 

RER, peak blood [lactate] and the fraction of peak V O2 at which the GET occurred 

which did not differ between exercise modes (P > 0.05).  

 

Table 3 presents the V O2 responses to the constant-work-rate tests on the cycle 

ergometer and upper body ergometer. Between-group differences were evident in 

baseline V O2, with UT demonstrating a higher baseline value regardless of the 

exercise modality (P < 0.01). The UT had a significantly longer V O2 phase II τ (i.e. 

slower kinetics) during upper body exercise compared to Τ (P < 0.001) and also 

compared to their respective cycle ergometer response (P < 0.01). There was no 

correlation (P > 0.05) between the upper body and cycle ergometer phase II τ in T (r = 

-0.36) UT (r = -0.33) or when all the girls were analysed together (r = -0.21). The V O2 

response of a representative participant from both groups is illustrated in Figure 1 for 

both cycle and upper body exercise. No training status-related differences were 

evident in the other V O2 related parameters during constant-work-rate exercise as 

shown in Table 3. No significant correlation was evident between peak V O2 and the 

phase II τ in T or UT girls or when the all the girls were analysed together for either 

cycle exercise (r = -0.47, -0.37 and -0.36) or upper body exercise (r = -0.18, -0.43 and 

-0.46). 

 

The higher work rates employed during cycle exercise resulted in higher absolute V O2 

values both at the end of the primary phase and at the end of exercise (P < 0.001).  

However, the gain of the primary component of V O2 was higher during upper body 

exercise (P < 0.01). Τ had a higher end-exercise blood [lactate] during cycle 

compared to upper body exercise (P < 0.01). A V O2 slow component was evident in 

all the girls’ responses with the exception of one trained girl who failed to show a 

significant deviation from the steady state during upper body exercise. There were no 
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differences in the absolute or relative magnitude of the V O2 slow component with 

training status or exercise modality.  

 

The parameters derived from the modelling of the HR responses to constant-work-rate 

exercise are presented in Table 4. UT had higher baseline HR regardless of the 

exercise modality (P < 0.01). On both modalities, the HR response was faster in T 

than UT (P < 0.01) but there was no influence of exercise modality in either group. 

The HR response of a representative participant from both groups is illustrated in 

Figure 2 for both cycle and upper body exercise. No correlation was found for either 

exercise mode between the V O2 phase II τ and the HR τ in either trained (cycle: r = 

0.53; upper body: r = 0.22) or untrained (cycle: r = 0.44; upper body: r = 0.14) girls or 

when all the girls were analysed together (cycle: r = 0.35; upper body: r = 0.19). 

 

Discussion 

 

 

This is the first study to investigate the influence of training status and exercise 

modality on the V O2 and HR kinetic responses during step transitions to a heavy 

intensity work rate in children. We hypothesised that adaptations to swim training 

would be evident in the V O2 and HR kinetics measured during constant-work-rate 

exercise tests and that the effects would be more evident during upper body than 

during cycle ergometry. The results are partly consistent with our hypotheses as 

training status effects were evident in the V O2 kinetic response to upper body 

ergometry and in the HR kinetic response to both exercise modalities. Specifically, in 

response to the transition to a heavy-intensity work rate, trained girls had faster V O2 

(upper body only) and HR kinetics (both modalities) compared to untrained girls. 

There was no effect of training status on the physiological responses to incremental 

exercise for either exercise modality. 

 

Peak physiological responses 

 

The peak physiological responses observed in the present study during both cycle and 

upper body ergometry demonstrate the insensitivity of peak values to training in 

children. Whilst the absence of an influence of training status on peak V O2 is not a 
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novel finding during cycle ergometry (Shephard 1992; Welsman et al. 1996), the 

physiological responses to upper body ergometry have not previously been 

investigated. This study therefore demonstrates that even when a more relevant, if not 

entirely sport-specific, exercise modality is used, incremental tests to the limit of 

tolerance are inappropriate for the investigation of training status differences, at least 

in pre- and early-pubertal girls. A limitation of this study is that no supra-maximal 

tests were conducted to verify if the peak V O2 values obtained from the incremental 

ramp tests were true peak values. The HR, RER and blood [lactate] criteria that are 

commonly applied for the acceptance of a V O2 ‘max’ both in adult and paediatric 

populations has recently been challenged  (Barker et al. 2009; Poole et al. 2008b). 

Consequently, the peak V O2 values reported here cannot be definitively stated to 

reflect a maximal effort and are presented for consideration within the limits of 

reliability reported for peak V O2 determined using this traditional methodology 

(Welsman et al. 2005).  

 

The similar peak V O2 values reported here between the T and UT girls may largely 

reflect genetic factors and/or that the appropriate hormonal milieu required for 

training adaptations in peak V O2 to be manifest is not sufficiently developed before 

puberty (Katch 1983). It is widely accepted that stroke volume (and hence cardiac 

output) is a primary determinant of peak V O2 (Nottin et al. 2002; Obert et al. 2003). It 

is interesting to note, therefore, that several studies have been unable to demonstrate 

changes in myocardial morphology following training in children (Nottin et al. 2004; 

Obert et al. 2009; Rowland et al. 2009). Since changes in cardiac structure including 

an increased thicknesses of the intraventricular and posterior walls thickness are 

commonly reported in adults (e.g. Caso et al. 2000; George et al. 1991), this might 

indicate that structural adaptations to cardiac muscle with training is somehow 

impeded in children. This age-related disparity may be related to a biological 

immaturity such as a lack of testosterone (Obert et al. 2003; Rowland et al. 1994) or 

to an overload limitation, either due to the lower blood pressures present in children 

during exercise (Nottin et al. 2002) or the shorter duration of training undertaken by 

children (Nottin et al. 2004). Although training has been reported to increase 

testosterone and growth hormone levels from puberty onwards, no difference in the 
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levels of these hormones has been shown pre-puberty (Daly et al. 1998; Tsolakis et al. 

2003; Zakas et al. 1994). 

 

Consistent with previous training studies in pre-pubertal children, we found no 

influence of training status on the fraction of peak V O2 at which the GET occurred 

(Cleuziou et al. 2002; Obert et al. 2000). These findings contrast with those 

commonly reported in adults where training increases the fraction of peak V O2 at 

which the GET occurs (Boone et al. 2008; Carter et al. 2000). The reason/s for this 

discrepancy is unclear from the present results. Exercise modality did not influence 

the percentage of peak V O2 at which the GET occurred, a finding which agrees with 

some adult studies (Koga et al. 1996; Schneider et al. 2002) but contrasts with others 

(Bhambhani et al. 1998; Davis et al. 1976). 

 

Sub-maximal physiological responses: cycle exercise 

 

In agreement with previous studies, swim training status did not alter the primary 

component V O2 kinetics nor affect the V O2 slow component amplitude in absolute or 

relative terms during cycle ergometer exercise (Cleuziou et al. 2002; Obert et al. 

2000). The novelty of this study therefore lies not in the cycle ergometry results but in 

the confidence associated with those results, as this is the first study in children to 

employ a stringent and controlled methodology, the result of which was confidence 

intervals well within those suggested by Fawkner and colleagues (2007) for both the 

phase II τ and primary phase amplitude.  

 

Our results are not, however, in agreement with those obtained in adults which show a 

reduced phase II τ during cycle exercise subsequent to training (e.g. Bailey et al. 

2009; Berger et al. 2006; Figueira et al. 2008; Koppo et al. 2004) or consequently 

with our hypothesis. The cause of this disparity is not readily apparent but may be 

related to either an age-dependent change in the muscles’ potential for oxygen 

utilisation (Fawkner and Armstrong 2004a) or to the shorter duration of training in 

children. Alternatively, the failure of this and previous studies to demonstrate 

differences in the V O2 kinetic response in relation to training or training status during 

cycle ergometry may be related to inappropriate testing modalities. Swimming is 
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widely accepted to have a significant upper body contribution (Ogita et al. 1996) and 

hence the testing of swimmers on a cycle ergometer might not be sufficiently specific. 

Whilst there is a variable contribution of the lower body to swimming, the present 

results could suggest there was very little effect of training on the legs of the 

participants tested.  Additionally, the lack of difference in V O2 kinetics between the T 

and UT children during cycle exercise might reflect a similar level of habitual 

physical activity involving walking, running or cycling in the two groups. 

 

Sub-maximal physiological responses: upper body exercise 

 

To our knowledge, this is the first study to characterise V O2 kinetics during upper 

body exercise in children. The phase II τ values reported here for UT children are 

similar to those of Smith et al. (2006b) and considerably faster than those reported by 

Koga et al. (1996) and Koppo et al. (2002) for adults. No data are available for 

comparison with the trained girls phase II τ, even within the adult literature. The 

primary phase gain for both trained and untrained girls is within the range reported in 

adult studies (Koppo et al. 2002; Smith et al. 2006b). 

 

This is the first study to report a significant training status-related difference in the 

V O2 kinetics of prepubertal girls. Specifically, the phase II τ was 32% faster for upper 

body ergometry in the T compared to the UT girls, a finding that emphasises the 

importance of test mode specificity and indicates that an exercise modality involving 

the upper body is more appropriate for testing swimmers. Considering that upper 

body ergometry does not precisely represent the movements involved in swimming, it 

is likely that greater differences between T and UT girls would be demonstrated if 

V O2 kinetics were to be characterised during a swimming test. Further work is 

required to develop methodologies to enable such measurements.  

 

Resolution of the mechanisms responsible for the faster V O2 kinetics found in the 

swimmers of this study is impeded by the cross-sectional nature of the study. The 

comparison of T and UT participants means it is impossible to attribute the 

differences observed to training per se, as the differences may purely be a reflection 

of genetic traits which predisposed these children to success in swimming.  
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If physiological adaptations to training did contribute to the differences observed, the 

faster V O2 kinetics could potentially be related to an increased muscle O2 delivery, 

greater muscle oxidative capacity, or to differences in muscle fibre type distribution 

or recruitment subsequent to training. HR kinetics, which may provide a crude 

estimate of muscle blood flow kinetics (MacPhee et al. 2005), were faster for both 

exercise modalities in the T girls. However, the V O2 and HR kinetics were not related 

in either group suggesting that O2 oxygen delivery was not a limiting factor, a 

conclusion which agrees with adult studies (see Poole et al. 2008a, for review). 

Endurance training has been shown to enhance muscle oxidative capacity in adults 

through increases in mitochondrial volume and oxidative enzyme activities (Holloszy 

1967; Mogensen et al. 2006). Whether similar adaptations to training are present in 

pre-pubertal children remains to be resolved, with information regarding the muscle 

oxidative capacity of T and UT children almost non-existent (Mahon 2008). The 

limited information available suggests that training may increase muscle oxidative 

enzyme activity in children (Eriksson et al. 1973; Fournier et al. 1982).  An increased 

mitochondrial volume following endurance training would be predicted to result in 

faster V O2 kinetics (Meyer 1988). In the present study, we are unable to ascertain the 

physiological mechanism(s) which led to faster V O2 kinetics in T compared to UT 

girls. However, as in adults, this is likely a function of an enhanced integrated 

capacity to both transport and utilize O2 (Jones and Koppo 2005; Poole et al. 2008a). 

 

It is possible that the recruitment of muscle fibres of different types may influence the 

pulmonary phase II τ, since it has been suggested that type I fibres have a faster time 

constant for the rise in V O2 (Crow and Kushmerick 1982; Krustrup et al. 2008). 

Indirect evidence for an influence of muscle fibre type on V O2 kinetics has been 

provided by the demonstration of a negative correlation between the type I fibres 

percentage in the vastus lateralis and the pulmonary phase II τ during cycle exercise 

(Pringle et al. 2003). Such a negative association is pertinent to the current results 

because some studies report that endurance training induces an increase in the 

percentage of type I fibres (Russell et al. 2003; Saltin and Gollnick 1983) and/or alters 

the recruitment pattern to reduce the contribution of type II fibres. Therefore, the 

faster τ in the current study may be related to training-induced differences in the 

metabolic properties of the muscle fibres recruited to meet the exercise demand.  
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There was no significant correlation between the peak V O2 and the phase II τ in either 

the T or the UT group for either exercise mode. This is consistent with some previous 

studies in both paediatric (Cleuziou et al. 2002; Fawkner et al. 2002) and adult (Carter 

et al. 2000) populations, but differs from other studies which have suggested that 

higher peak V O2 values are associated with faster phase II V O2 kinetics in children 

(Cooper et al. 1985) and adults (Chilibeck et al. 1996; Powers et al. 1985). Given that 

both peak V O2 and V O2 kinetics are acknowledged as parameters of oxidative 

metabolic function, a relationship between the two might be expected at least in a 

sample of subjects with heterogeneous aerobic fitness (Poole et al. 2005). That this 

was not the case in the present study might be a function of the relatively small 

sample size but might also reflect differences in the factors which are predominantly 

limiting, i.e., central cardiovascular factors for peakV O2 and intrinsic muscle 

metabolic factors for V O2 kinetics (Poole et al. 2008a). 

 

Influence of exercise modality on V O2 kinetics 

 

To our knowledge, this is the first study to investigate the influence of exercise 

modality on the V O2 kinetics of T and UT children. The slower phase II τ during 

upper body ergometry compared to cycle ergometry in the UT girls is consistent with 

previous reports in adults (Koga et al. 1996; Koppo et al. 2002; Schneider et al. 2002). 

However, in the T girls there was no difference in the phase II τ between exercise 

modalities. 

 

The musculature of the arm and leg differ in the percentage of type I muscle fibres 

and the capillary-to-fibre ratio, both being lower in the arm musculature (Johnson et 

al. 1973; Turner et al. 1997). Furthermore, the muscle perfusion pressure has been 

suggested to be lower during arm exercise due to a reduced “gravitational assist” to 

muscle blood flow compared to upright leg exercise (Jones and Burnley 2005; Koga 

et al. 1999; Koppo and Bouckaert 2005). These factors could negatively influence the 

rate of adjustment of V O2 to an increased metabolic demand and, therefore, the 

modality-related differences in the phase II τ in UT girls may be a reflection of these 

differences. Given the physiological differences in arm and leg musculature including 
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a higher proportion of type II fibres in the upper body, it is perhaps surprising that no 

differences were found in the amplitude of the V O2 slow component between exercise 

modalities. However, it is important to note that upper body exercise involves a 

contribution of accessory muscles, such as the shoulders and back, both in the 

generation of power and for stabilisation; it is possible that these factors obscure the 

relationship between fibre recruitment and V O2 kinetics (Smith et al. 2006a).  

 

In conclusion, incremental exercise tests did not reveal any influence of training status 

on GET or peak V O2 regardless of exercise modality in pre-pubertal girls. However, 

T girls had faster phase II V O2 kinetics compared to UT girls during upper body but 

not cycle ergometry. As a consequence, the V O2 kinetics of T girls was not different 

between the exercise modalities, whereas UT girls had slower phase II V O2 kinetics 

during upper body exercise compared to leg exercise. These data therefore highlight 

the importance of test specificity in revealing training status differences and 

demonstrate, for the first time, that V O2 kinetics are faster in trained compared to 

untrained pre-pubertal girls.  
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Table 1. Morphological characteristics of participants 

 

 Trained Untrained 

Age (y) 11.4 ± 0.7 11.5 ± 0.6 

Stature (m) 1.48 ± 0.06 1.52 ± 0.05 

Mass (kg) 39.9 ± 6.9 43.2 ± 8.6 

Sum of skinfolds (mm) 36.4 ± 14.6 43.8 ± 25.6 

Years to PHV (y) -0.46 ± 0.5 -0.31 ± 0.45 

Values are mean ± SD. No significant differences were present. N = 8 
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Table 2. Peak physiological responses to exercise on a cycle and upper body 

ergometer in trained and untrained girls 

 

 Cycle Ergometry Upper body Ergometry 

 Trained Untrained Trained Untrained 

Peak V O2 (L.min
-1

) 1.69 ± 0.23
 

1.60 ± 0.30
 

1.13 ± 0.13 
# 

1.09 ± 0.19 
## 

Peak V O2 (mL.kg
-1

.min
-1

) 42.9 ± 4.9 37.8 ± 7.7 29.0 ± 5.5 
# 

25.4 ± 2.9 
## 

Peak V O2 (mL.kg
-0.56

.min
-1

) 311 ± 30
 

285 ± 47 260 ± 33 
# 

242 ± 31 

Peak HR (b.min
-1

) 192 ± 7 195 ± 8 177 ± 6 
# 

180 ± 17 
## 

Peak RER 1.11 ± 0.08 1.18 ± 0.13 1.07 ± 0.05 1.16 ± 0.12
 

Peak blood [lactate] (mM) 5.0 ± 0.9 5.3 ± 1.2 3.7 ± 0.6 3.9 ± 0.7 

Peak WR (W) 142 ± 12 132 ± 25 59 ± 6 58 ± 11 

GET (L.min
-1

) 0.84 ± 0.06 0.88 ± 0.17 0.53 ± 0.07 
# 

0.57 ± 0.10 
## 

GET (% peak V O2) 51 ± 7 58 ± 3 50 ± 9 54 ± 5 

Values are mean ± SD.  HR, heart rate; RER, respiratory exchange ratio; blood [lactate], blood lactate concentration; WR, work 

rate; GET, gas exchange threshold. N = 8 

 # Significant difference between modes in trained children (P < 0.01) 

## Significant difference between modes in untrained children (P < 0.01) 
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Table 3. Oxygen uptake kinetics and blood [lactate] during heavy-intensity exercise 

on a cycle and upper body ergometer in trained and untrained girls 

Values are mean ± SD.  τ, time constant; blood [lactate], blood lactate concentration. N = 8 

* Significant difference between trained and untrained in cycle ergometer response (P < 0.01 

** Significant difference between trained and untrained in upper body response (P < 0.01) 

# Significant difference between modes in trained children (P < 0.01) 

## Significant difference between modes in untrained children (P < 0.01) 

 

 
Cycle Ergometry Upper Body Ergometry 

 
Trained Untrained Trained Untrained 

Baseline V O2 (L.min
-1

)
 0.44 ± 0.04

 
0.55 ± 0.06 

* 
0.34 ± 0.02 

# 
0.40 ± 0.05 

**, ## 

Phase II time delay (s) 11 ± 3 12 ± 3 12 ± 2 9 ± 4 

Phase II τ (s)   25 ± 5 25 ± 7 25 ± 3 37 ± 6 
**, ##

 

95% confidence interval (s) 3 ± 1 4 ± 0 4 ± 1 4 ± 0 

Phase II amplitude (L.min
-1

) 0.83 ± 0.16
 

0.64 ± 0.17 0.45 ± 0.07 
# 

0.51 ± 0.18 

Phase II gain (mLO2.min
-1

.W
-1

) 9.2 ± 0.9
 

8.9 ± 2.7
 

12.2 ± 2.5 
# 

12.5 ± 1.9 
## 

Slow component amplitude (L.min
-1

) 0.08 ± 0.04 0.06 ± 0.03 0.05 ± 0.4 0.05 ± 0.02 

Slow component amplitude (% end exercise V O2) 10 ± 4 9 ± 5 9 ± 5 8 ± 2 

End-exercise V O2 (L.min
-1

) 1.35 ± 0.19
 

1.26 ± 0.17
 

0.83 ± 0.09 
# 

0.95 ± 0.23 
## 

Blood [lactate] (mM) 3.9 ± 0.9
 

4.1 ± 1.4 2.7 ± 0.6 
# 

3.3 ± 1.0 
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Table 4. Heart rate kinetics during heavy-intensity exercise on a cycle and upper body 

ergometer in trained and untrained girls 

 

 Cycle Ergometry Upper Body Ergometry 

 Trained Untrained Trained Untrained 

HR baseline (b.min
-1

) 91 ± 8 112 ± 9 
* 

93 ± 6 101 ± 5 
**,##

 

HR phase II τ (s) 31 ± 11 47 ± 9 
*
 33 ± 8 43 ± 4 

** 

HR phase II amplitude (b.min
-1

) 62 ± 8
 

54 ± 10
 

48 ± 7 
# 

41 ± 10 
## 

End-exercise HR (b.min
-1

) 169 ± 9
 

179 ± 9
 

151 ± 12 
# 

157 ± 17 
## 

95% confidence interval (s) 1 ± 0 2 ± 1 1 ± 0 2 ± 1 

Values are mean ± SD.  HR, heart rate; τ, time constant. N = 8 

* Significant difference between trained and untrained in cycle ergometer response (P < 0.01) 

** Significant difference between trained and untrained in upper body response (P < 0.01) 

# Significant difference between modes in trained children (P < 0.01) 

## Significant difference between modes in untrained children (P < 0.01) 
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Figures 

 

Fig. 1. Pulmonary oxygen uptake response to a step increment in work rate from an 

unloaded baseline to a heavy intensity work rate (40%∆) in a representative trained 

and untrained participant. Graph A shows the response during cycle ergometer 

exercise and graph B the response to upper body ergometer exercise. The data 

expressed as a percentage of the end exercise amplitude. The trained girls are shown 

as closed circles and the untrained girls are shown as open circles. The solid and 

dashed lines represent the mono-exponential model fit of the data. Note the 

significantly faster τ in the trained participant during upper body exercise. For clarity, 

data are displayed as 5-s bin averages 

 

 

Fig. 2. Heart rate response to a step increment in work rate from an unloaded baseline 

to a heavy intensity work rate (40%∆) in a representative trained and untrained 

participant. Graph A shows the response during cycle ergometer exercise and graph B 

the response to upper body ergometer exercise. The data expressed as a percentage of 

the primary phase amplitude. The trained girls are shown as closed circles and the 

untrained girls are shown as open circles. The solid and dashed lines represent the 

mono-exponential model fit of the data. Note the significantly faster τ in the trained 

participant during both exercise modalities. For clarity, data are displayed as 5-s bin 

averages 
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