62 research outputs found

    Influence Of Backing And Matching Layers In Ultrasound Transducers Performance

    Get PDF
    In this work we have investigated the influence of the backing layer composition and the matching layer thickness in the performance of ultrasound transducers constructed with piezoelectric ceramic discs. We have constructed transducers with backing layers of different compositions, using mixtures of epoxy with alumina powder and/or Tungsten powder and with λ/4 or 3λ/4 thickness epoxy matching layers. The evaluation tests were performed in pulse-echo mode, with a flat target, and in transmission/reception mode, with a calibrated PVDF hydrophone. The acoustical field emitted by each transducer was mapped in order to measure the on-axis and transverse field profiles, the aperture size and the beam spreading. The bandwidths of the transducers were determined in pulse-echo mode. Comparing the evaluation tests results of two transducers constructed with the same backing layer, the one constructed with λ/4 thickness epoxy matching layer showed better performance. The results showed that the transducers constructed with epoxy, alumina and Tungsten powders backing layers have larger bandwidth. The larger depth of field was measured for transducers constructed with epoxy and Tungsten powder backing layers. These transducers and those constructed with epoxy, Tungsten and alumina powders backing layers showed the larger field intensities in the measured transverse profiles.50358696(1999) Standard Guide for Evaluating Characteristics of Ultrasonic Search Units, , ASTM E-1065 1999Desilets, C.S., Fraser, J.D., Kino, G.S., The design of efficient broad-band piezoelectric transducers (1978) IEEE Transactions on Sonics and Ultrasonics, SU-25 (3), pp. 115-125(1996) Ultrasonics Real Time Pulse-echo Systems: Test Procedures to Determine Performance Specification, , IEC-1390(1989) IEEE Guide for Medical Ultrasound Field Parameter Measurements, , IEEE American National Standard Std 790(1978) IEEE Standard on Piezoelectricity, , IEEE American National Standard Std 176Inoue, T., Ohta, M., Takahashi, S., Design of ultrasonic transducers with multiple acoustic matching layers for medical applications (1987) IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 34 (1)Lockwood, G.R., Turnbull, D.H., Foster, F.S., Fabrication of high frequency spherically shaped ceramic transducers (1994) IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 41 (2)Mitra, R., Saksena, T.K., Study on the vibrational characteristics of ultrasonic transducers using tapered piezoelectric ceramic elements (1995) Journal of the Acoustical Society of America, 58 (2)Sayers, C.M., Tait, C.E., Ultrasonic properties of transducer backing (1984) Ultrasonics, 22 (2

    Global, regional, and national age-sex-specific mortality and life expectancy, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    BACKGROUND: Assessments of age-specific mortality and life expectancy have been done by the UN Population Division, Department of Economics and Social Affairs (UNPOP), the United States Census Bureau, WHO, and as part of previous iterations of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD). Previous iterations of the GBD used population estimates from UNPOP, which were not derived in a way that was internally consistent with the estimates of the numbers of deaths in the GBD. The present iteration of the GBD, GBD 2017, improves on previous assessments and provides timely estimates of the mortality experience of populations globally. METHODS: The GBD uses all available data to produce estimates of mortality rates between 1950 and 2017 for 23 age groups, both sexes, and 918 locations, including 195 countries and territories and subnational locations for 16 countries. Data used include vital registration systems, sample registration systems, household surveys (complete birth histories, summary birth histories, sibling histories), censuses (summary birth histories, household deaths), and Demographic Surveillance Sites. In total, this analysis used 8259 data sources. Estimates of the probability of death between birth and the age of 5 years and between ages 15 and 60 years are generated and then input into a model life table system to produce complete life tables for all locations and years. Fatal discontinuities and mortality due to HIV/AIDS are analysed separately and then incorporated into the estimation. We analyse the relationship between age-specific mortality and development status using the Socio-demographic Index, a composite measure based on fertility under the age of 25 years, education, and income. There are four main methodological improvements in GBD 2017 compared with GBD 2016: 622 additional data sources have been incorporated; new estimates of population, generated by the GBD study, are used; statistical methods used in different components of the analysis have been further standardised and improved; and the analysis has been extended backwards in time by two decades to start in 1950. FINDINGS: Globally, 18·7% (95% uncertainty interval 18·4–19·0) of deaths were registered in 1950 and that proportion has been steadily increasing since, with 58·8% (58·2–59·3) of all deaths being registered in 2015. At the global level, between 1950 and 2017, life expectancy increased from 48·1 years (46·5–49·6) to 70·5 years (70·1–70·8) for men and from 52·9 years (51·7–54·0) to 75·6 years (75·3–75·9) for women. Despite this overall progress, there remains substantial variation in life expectancy at birth in 2017, which ranges from 49·1 years (46·5–51·7) for men in the Central African Republic to 87·6 years (86·9–88·1) among women in Singapore. The greatest progress across age groups was for children younger than 5 years; under-5 mortality dropped from 216·0 deaths (196·3–238·1) per 1000 livebirths in 1950 to 38·9 deaths (35·6–42·83) per 1000 livebirths in 2017, with huge reductions across countries. Nevertheless, there were still 5·4 million (5·2–5·6) deaths among children younger than 5 years in the world in 2017. Progress has been less pronounced and more variable for adults, especially for adult males, who had stagnant or increasing mortality rates in several countries. The gap between male and female life expectancy between 1950 and 2017, while relatively stable at the global level, shows distinctive patterns across super-regions and has consistently been the largest in central Europe, eastern Europe, and central Asia, and smallest in south Asia. Performance was also variable across countries and time in observed mortality rates compared with those expected on the basis of development. INTERPRETATION: This analysis of age-sex-specific mortality shows that there are remarkably complex patterns in population mortality across countries. The findings of this study highlight global successes, such as the large decline in under-5 mortality, which reflects significant local, national, and global commitment and investment over several decades. However, they also bring attention to mortality patterns that are a cause for concern, particularly among adult men and, to a lesser extent, women, whose mortality rates have stagnated in many countries over the time period of this study, and in some cases are increasing
    corecore