246 research outputs found
A Holographic Animation of Compressible Flow Interferograms
Prize Winning Entry in モGallery of Fluid Motionヤ, Physics of Fluids, Vol. 4, No. 9, Sep. 1992, pp. 1869 - 1882
Photoluminescence upconversion at interfaces driven by a sequential two-photon absorption mechanism
This paper reports on the results of an investigation into the nature of photoluminescence upconversion at
GaAs/InGaP2 interfaces. Using a dual-beam excitation experiment, we demonstrate that the upconversion in our
sample proceeds via a sequential two-photon optical absorption mechanism. Measurements of photoluminescence
and upconversion photoluminescence revealed evidence of the spatial localization of carriers in the InGaP2
material, arising from partial ordering of the InGaP2. We also observed the excitation of a two-dimensional electron
gas at the GaAs/InGaP2 heterojunction that manifests as a high-energy shoulder in the GaAs photoluminescence
spectrum. Furthermore, the results of upconversion photoluminescence excitation spectroscopy demonstrate that
the photon energy onset of upconversion luminescence coincides with the energy of the two-dimensional electron
gas at the GaAs/InGaP2 interface, suggesting that charge accumulation at the interface can play a crucial role in
the upconversion process
Why did Donders, after describing pseudotorsion, deny the existence of ocular counterrolling together with Ruete, Volkmann, von Graefe and von Helmholtz, until Javal reconfirmed its existence?
After the rapid spread of strabismus surgery by total tenotomy, which had been proposed by the orthopedist Louis Stromeyer from Göttingen in 1838 and performed by the plastic surgeon Johann Friedrich Dieffenbach on October 26th and by the ophthalmologist Florent Cunier on October 29th, 1839, brilliant researchers studied the physiology of eye movements, resulting in the laws by Franciscus Cornelis Donders on pseudotorsion in tertiary positions of gaze and by Johann Benedict Listing that each eye position can be reached by rotation about an axis perpendicular to the primary and the new position of gaze. John Hunter had first described ocular counterrolling (OCR) with head tilt in 1786. The anatomist Alexander Friedrich von Hueck inferred from anatomical studies, however, that up to 28.6° OCR would be possible onhead-tilt to right or left shoulder in 1838, and estimated his own OCR seen in a mirror at approximately 25°. Donders, Christian Georg Theodor Ruete, Alfred Wilhelm Volkmann, Albrecht von Graefe and Hermann von Helmholtz subsequently denied the existence of OCR for many years and thought that only pseudotorsion existed. Louis Emile Javal had myopia and astigmatism, and he re-established the existence of OCR in 1867 when he noticed that, on head tilt to either shoulder, the axis of astigmatism of his eyes no longer coincided with the axis of astigmatism of his glasses
Recommended from our members
Raman spectroscopy at simultaneous pressure and temperature: Phase relations and lattice dynamics of CaCo sub 3
Raman spectra of oriented single crystals of calcite were measured at simultaneous high pressures and temperatures up to 40 kbar and 350{degrees}C. The fluorescence frequency shift of Sm:YAG was utilized for accurate pressure determination at elevated temperature, which exhibits negligible temperature shift in this temperature range. With increasing pressure the calcite-CaCO{sub 3}(II) and CaCO{sub 3}(II)-CaCO{sub 3}(III) transformations are observed at 14.5 and 18.5 kbar, respectively, and CaCO{sub 3}(III) remains the stable phase beyond 40 kbar. At elevated temperature and pressure, the width of the CaCO{sub 3}(II) stability field decreases and, at temperatures greater than 200{degrees}C, CaCO{sub 3}(III) transforms to aragonite. The CaCO{sub 3}(III)-aragonite phase boundary is insensitive to pressure over the 20 to 40 kbar interval. Calcite-CaCO{sub 3}(II) phase transition is first order and reversible, the CaCO{sub 3}(II)-CaCO{sub 3}(III) transition exhibits kinetic irreversibility, and the CaCo{sub 3}(III)-aragonite transition is sluggish and irreversible. Lattice dynamical calculations along T to F direction in calcite indicate an unstable phonon mode. The atomic displacements associated with this mode are consistent with those required for a continuous, displacive calcite-CaCO{sub 3}(II) phase transition. 29 refs., 3 figs
Recommended from our members
Laser-induced fluorescence in doped metal oxide planar waveguides deposited from aqueous solutions
An aqueous route to the deposition of complex metal oxide films is based upton the complexation of the corresponding metal nitrate salts by glycine, followed by spin-casting the concentrated solution onto silica substrates. The presence of glycine serves to frustrate precipitation and leads to the formation of a glassy matrix through which metal cations are homogeneously dispersed. Subsequent heating of coated substrates initiates an oxidation-reduction reaction which removes the organic matrix and residual nitrate leaving behind a film of the desired oxide composition. Using this method, ruby (Cr:Al{sub 2}O{sub 3}) and Sm:YAG (Sm:Y{sub 3}Al{sub 5}O{sub 12}) films on the order of 150 nm thick have been deposited. The respective phase have been confirmed by XRD data and from the measured fluorescence spectra. The red fluorescence exhibited by these materials under 488 nm excitation is dependent upon the ambient temperature and pressure. A marked shift in wavelength is observed as a function of increasing pressure. Ruby also exhibits a temperature dependent wavelength shift in contrast to Sm:YAG where a negligible shift is seen to temperatures near 1200 K. Fluorescence lifetimes of both materials exhibit a temperature dependence which varies with dopant concentration. This work suggests the possible application of these films as pressure-temperature sensors in a planar waveguide configuration or as a coating material for optical fibers. Details of the deposition process will be reviewed and the fluorescence response of both types of films will be summarized. 15 refs., 4 figs
A search for radio emission from double-neutron star merger GW190425 using Apertif
ContextDetection of the electromagnetic emission from coalescing binary neutron stars (BNS) is important for understanding the merger and afterglow. Aims. We present a search for a radio counterpart to the gravitational-wave (GW) source GW190425, a BNS merger, using Apertif on the Westerbork Synthesis Radio Telescope (WSRT). MethodsWe observed a field of high probability in the associated localisation region for three epochs at ΔT\ue2€., =\ue2€., 68, 90, 109 d post merger. We identified all sources that exhibit flux variations consistent with the expected afterglow emission of GW190425. We also looked for possible transients. These are sources that are only present in one epoch. In addition, we quantified our ability to search for radio afterglows in the fourth and future observing runs of the GW detector network using Monte Carlo simulations. ResultsWe found 25 afterglow candidates based on their variability. None of these could be associated with a possible host galaxy at the luminosity distance of GW190425. We also found 55 transient afterglow candidates that were only detected in one epoch. All of these candidates turned out to be image artefacts. In the fourth observing run, we predict that up to three afterglows will be detectable by Apertif. ConclusionsWhile we did not find a source related to the afterglow emission of GW190425, the search validates our methods for future searches of radio afterglows
A bright, high rotation-measure FRB that skewers the M33 halo
We report the detection of a bright fast radio burst, FRB\,191108, with
Apertif on the Westerbork Synthesis Radio Telescope (WSRT). The interferometer
allows us to localise the FRB to a narrow 5\arcsec\times7\arcmin ellipse by
employing both multibeam information within the Apertif phased-array feed (PAF)
beam pattern, and across different tied-array beams. The resulting sight line
passes close to Local Group galaxy M33, with an impact parameter of only
18\,kpc with respect to the core. It also traverses the much larger
circumgalactic medium of M31, the Andromeda Galaxy. We find that the shared
plasma of the Local Group galaxies could contribute 10\% of its
dispersion measure of 588\,pc\,cm. FRB\,191108 has a Faraday rotation
measure of +474\,\,rad\,m, which is too large to be explained by
either the Milky Way or the intergalactic medium. Based on the more moderate
RMs of other extragalactic sources that traverse the halo of M33, we conclude
that the dense magnetised plasma resides in the host galaxy. The FRB exhibits
frequency structure on two scales, one that is consistent with quenched
Galactic scintillation and broader spectral structure with
\,MHz. If the latter is due to scattering in the shared
M33/M31 CGM, our results constrain the Local Group plasma environment. We found
no accompanying persistent radio sources in the Apertif imaging survey data
Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment
This paper describes an analysis of the angular distribution of W->enu and
W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with
the ATLAS detector at the LHC in 2010, corresponding to an integrated
luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and
the missing transverse energy, the W decay angular distribution projected onto
the transverse plane is obtained and analysed in terms of helicity fractions
f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV
and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw
> 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour,
are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017
+/- 0.030, where the first uncertainties are statistical, and the second
include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables,
revised author list, matches European Journal of Physics C versio
Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS
The chi_b(nP) quarkonium states are produced in proton-proton collisions at
the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS
detector. Using a data sample corresponding to an integrated luminosity of 4.4
fb^-1, these states are reconstructed through their radiative decays to
Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks
corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new
structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is
also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes.
This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table,
corrected author list, matches final version in Physical Review Letter
- …