80 research outputs found

    In Vitro Propagation of Angiopteris Evecta Using Spores

    Full text link
    Techniques of establishing Angiopleris evecta plants in vitro were studied. Soaking of A. evecta spores in water for 24 hours markedly reduced spore contamination. Soaking of the spores in 1 -2 % of sodium hypochlorite for less than 5 minutes allowed satisfactory disinfestation without affecting spore viability. Lower concentration of minerals (1/4 MS), presence of charcoal in the medium and exposure of the spores to light were crucial for spore germination and gainetophytc development of A. evecta

    Optimisation of Second-Generation Biodiesel Production from Australian Native Stone Fruit Oil Using Response Surface Method

    Full text link
    © 2018 by the authors. In this study, the production process of second-generation biodiesel from Australian native stone fruit have been optimised using response surface methodology via an alkali catalysed transesterification process. This process optimisation was performed varying three factors, each at three different levels. Methanol: oil molar ratio, catalyst concentration (wt %) and reaction temperature were the input factors in the optimisation process, while biodiesel yield was the key model output. Both 3D surface plots and 2D contour plots were developed using MINITAB 18 to predict optimum biodiesel yield. Gas chromatography (GC) and Fourier transform infrared (FTIR) analysis of the resulting biodiesel was also done for biodiesel characterisation. To predict biodiesel yield a quadratic model was created and it showed an R2 of 0.98 indicating the satisfactory performance of the model. Maximum biodiesel yield of 95.8% was obtained at a methanol: oil molar ratio of 6:1, KOH catalyst concentration of 0.5 wt % and a reaction temperature of 5 ◦C. At these reaction conditions, the predicted biodiesel yield was 95.9%. These results demonstrate reliable prediction of the transesterification process by Response surface methodology (RSM). The results also show that the properties of the synthesised Australian native stone fruit biodiesel satisfactorily meet the ASTM D6751 and EN14214 standards. In addition, the fuel properties of Australian native stone fruit biodiesel were found to be similar to those of conventional diesel fuel. Thus, it can be said that Australian native stone fruit seed oil could be used as a potential second-generation biodiesel source as well as an alternative fuel in diesel engines

    Physio-chemical assessment of beauty leaf (Calophyllum inophyllum) as second-generation biodiesel feedstock

    Get PDF
    Recently, biodiesels from non-edible vegetable oil, known as second generation biodiesel, are receiving more attention because it can overcome food versus fuel crisis related to edible oils. The Beauty Leaf tree (Calophyllum Inophyllum) is a potential source of non-edible vegetable oil for producing future generation biodiesel because of its sustainability in a wide range of climate conditions, easy cultivation, high fruit production rate, and the high oil content in the seed. In this study, bio-oil was extracted from beauty leaf tree seeds through three different oil extraction methods. The important physical and chemical properties of produced beauty leaf oils were experimentally analysed and compared with commercial edible vegetable oils. Biodiesel was produced using a two-stage esterification process consisting of acid catalysed pre-esterification and alkali catalysed Transesterification. Fatty acid methyl ester (FAME) profile and physicochemical properties including kinematic viscosity, density, higher heating value and acid value were measured using laboratory standard testing equipment following internationally recognized testing procedures. Other fuel properties including oxidation stability, iodine value, cetane number, flash point, cold filter plugging point, cloud point and pour point temperature were estimated using Fatty acid methyl ester (FAME) of biodiesel. Physicochemical properties of beauty leaf oil biodiesels are described briefly and compared with recognised biodiesel standards and commercially available biodiesels produced from edible oil feedstock. Quality of produced biodiesel was assessed based 13 important chemical and physical properties through Preference Ranking Organisation Method for Enrichment Evaluation (PROMETHEE) and Graphical Analysis for Interactive Assistance (GAIA) analysis. This study found that Mechanical extraction using the screw press can produce oil from correctly prepared product at a low cost, however overall this method is ineffective with relatively low oil yields. The study found that seed preparation has a significant impact on oil yields, especially in the mechanical oil extraction method. High temperature and pressure in extraction process increases the performance of oil extraction. On the contrary, this process increases the free fatty acid content in the oil. Clear difference was found in physical properties of beauty leaf oils that eventually affected the oil to biodiesel conversion process. However, beauty leaf oils methyl esters (biodiesel) were very consistent and able to meet almost all indicators of biodiesel standards. Furthermore, it showed as a better automobile fuel compared to most of the commercially available biodiesels produced from edible oil sources. Result of this study indicated that, Beauty Leaf oil seed is readily available feedstock to commence the commercial production of 2nd generation biodiesel. The findings of this study are expected to serve as the basis from which industrial scale biodiesel production from Beauty Leaf can be made

    Geographic and Within Tree Variation for Wood Properties in Acrocarpus fraxinifolius Wight and Arn. Populations

    Get PDF
    1049-1055The study was conducted to compare the wood parameters among nine populations of Acrocarpus fraxinifolius from Southern Karnataka. To understand the variation, three trees from each population were selected and different wood properties, viz., bark-thickness, wood density, specific gravity, fibre parameters and vessel parameters, were analysed. The basic wood density of species was ranged between 0.370 g∙cc−1 to 0.580 g∙cc−1. There was a significant difference in fibre length across the populations, with an average fibre length of 1225.49 μm. There was not much difference in fibre width, fibre lumen width and fibre wall thickness. Vessel parameters, except vessel wall thickness varied among the populations. The vessel length varied from 104.78 μm to 124.71 μm. The wood traits varied among the radial portion i.e., from pith to periphery region. Considering the important wood traits, Shreemangala and Balehonnuru populations were found to be better compared to other populations

    Green revolution to genome revolution: driving better resilient crops against environmental instability

    Get PDF
    Crop improvement programmes began with traditional breeding practices since the inception of agriculture. Farmers and plant breeders continue to use these strategies for crop improvement due to their broad application in modifying crop genetic compositions. Nonetheless, conventional breeding has significant downsides in regard to effort and time. Crop productivity seems to be hitting a plateau as a consequence of environmental issues and the scarcity of agricultural land. Therefore, continuous pursuit of advancement in crop improvement is essential. Recent technical innovations have resulted in a revolutionary shift in the pattern of breeding methods, leaning further towards molecular approaches. Among the promising approaches, marker-assisted selection, QTL mapping, omics-assisted breeding, genome-wide association studies and genome editing have lately gained prominence. Several governments have progressively relaxed their restrictions relating to genome editing. The present review highlights the evolutionary and revolutionary approaches that have been utilized for crop improvement in a bid to produce climate-resilient crops observing the consequence of climate change. Additionally, it will contribute to the comprehension of plant breeding succession so far. Investing in advanced sequencing technologies and bioinformatics will deepen our understanding of genetic variations and their functional implications, contributing to breakthroughs in crop improvement and biodiversity conservation

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Beauty Leaf (Calophyllum inophyllum L.), tree: a tree with great economic potential

    No full text
    Calophyllum inophyllum L. (Clusiaceae) commonly known as Alexandrian laurel or beauty leaf or Domba (in Sri Lanka) is essentially a littoral tree of the tropics, occurring above the high-tide mark along sea coasts of northern Australia and extending throughout Southeast Asia and southern India (Agroforesrey Database 2007).The tree is native to both Australia and Sri Lanka. For many years it has been used by indigenous communities and alternative medicine practitioners. It also has a high demand for its seed oil from cosmetics and pharmaceutical industries.It is a high potential bio-diesel plant. Seed yields 65% oil from its dry weight 3744 kg/ha from 400 trees (Azam et al. 2005). It has the highest per tree oil yield from 75 plant species tested so far. It can be used in conventional diesel engines (without any alterations) in its pure form or as a blend with mineral oil (Agarwal 2006).It is also a durable multi-purpose timber (density 560-900kg/m³) (Timber Species Notes, DPI Queensland 2007).With recently discovered plant properties (anti-HIV and anti-cancer active compounds), Calophyllum inophyllum can be placed amongst the most important multi-purpose trees.This paper reviews various economically important uses and services of Calophyllum inophyllum L. and areas for future research. This also outlines an ongoing research project “Provenance variations in ecophysiology, growth, performance, seed oil and Calocoumarin-A (anti-cancer agent) content of Calophyllum inophyllum L.” that is being carried out in Queensland, Australia and in Sri Lanka

    Production optimization and quality assessment of papaya (Carica papaya) biodiesel with response surface methodology

    No full text
    Ashwath, N ORCiD: 0000-0002-4032-4507; Rasul, M ORCiD: 0000-0001-8159-1321© 2017 Elsevier Ltd Optimization of biodiesel production from non-edible papaya seed oil was investigated in this study. Biodiesel production process parameters such as catalyst concentration, methanol:oil molar ratio and reaction temperature were optimized by using the Response Surface methodology based on the Box-Behnken experimental design. Optimization of the transesterification process was conducted by varying three factors each at three different levels and this required a total of fifteen runs. A quadratic model was created to predict the biodiesel yield where the R2value was found to be 0.99 which indicates the satisfactory accuracy of the model. Based on the results, the optimum process parameters for transesterification of the papaya seed oil mixture at an agitation speed of 600 rpm over a period of 60 min were found to be a methanol:oil molar ratio 10:1, KOH catalyst concentration of 1 wt% and reaction temperature of 45 °C. At these reaction conditions, the predicted and experimental biodiesel yield were 96.12% and 96.48% respectively which shows less than 0.5% variation. The biodiesel properties were characterized and the results obtained were found to satisfy both ASTM D6751 and EN14214 standards. The statistical tool MINITAB 17 was used to draw both 3D surface plots and 2D contour plots to predict the optimum biodiesel yield
    corecore