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Crop improvement programmes began with traditional breeding practices since
the inception of agriculture. Farmers and plant breeders continue to use these
strategies for crop improvement due to their broad application in modifying crop
genetic compositions. Nonetheless, conventional breeding has significant
downsides in regard to effort and time. Crop productivity seems to be hitting a
plateau as a consequence of environmental issues and the scarcity of agricultural
land. Therefore, continuous pursuit of advancement in crop improvement is
essential. Recent technical innovations have resulted in a revolutionary shift in
the pattern of breeding methods, leaning further towards molecular approaches.
Among the promising approaches, marker-assisted selection, QTL mapping,
omics-assisted breeding, genome-wide association studies and genome
editing have lately gained prominence. Several governments have progressively
relaxed their restrictions relating to genome editing. The present review highlights
the evolutionary and revolutionary approaches that have been utilized for crop
improvement in a bid to produce climate-resilient crops observing the
consequence of climate change. Additionally, it will contribute to the
comprehension of plant breeding succession so far. Investing in advanced
sequencing technologies and bioinformatics will deepen our understanding of
genetic variations and their functional implications, contributing to breakthroughs
in crop improvement and biodiversity conservation.
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1 Introduction

Agriculture has undergone transformation significantly over the past century as a result
of scientific expansion, shifting societal mores and transitions in the political, economic and
social environment. Plant breeding is considered to be a co-evolutionary process between
human civilization and food sources (Breseghello and Coelho, 2013). From the Green
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Revolution of the mid-20th century, which aimed to increase crop
yields through the use of high-yield varieties to the more recent
Genome Revolution, which is leveraging the latest in genomic and
biotechnological tools to create crops that are more resilient to
environmental instability, the field of plant breeding has been
constantly evolving. Over the years, plant breeders and farmers
have long been exploiting natural variations to develop and improve
crop cultivars (Sadia et al., 2021). However, overexploitation of any
practice facilitates disturbances in the balanced ecosystem. For
instance, the green revolution in rice in the 1960s led to the
invention of the rice cultivar, IR8 (Hargrove and Cabanilla, 1979;
Khush, 1999). The widespread adoption of this particular rice
variety averted the issue of food shortage across the Globe.
However, several socio-ecological concerns were observed with
the widespread use of the variety IR8. Several studies have
highlighted that IR8 requires a high amount of fertilizer input,
which in the long run would cause adverse effects on the
environment (Cassman, 1999). In addition, the large-scale
utilization of this rice cultivar narrowed down the genetic base,
which could result in being more susceptible to certain pests or
diseases (Sanchez et al., 2013; Shakiba and Eizenga, 2014).
Henceforth, it is undeniable that the excessive crop production
generally has a detrimental effect on the environment. But it is
also crucial to keep in mind that the scope and character of these
effects might be changed based on advanced techniques and
technological improvements. It makes it substantially more
crucial to carefully consider the benefits and drawbacks of
approaches often used in crop development. To address the
issues of genetic vulnerability, the application of different
advanced molecular breeding tools is highly essential in order to
create variability.

Among the existing breeding tools, some can create novel variability
(Rothan andCausse, 2007; Karthika et al., 2020; Awan et al., 2021; Schleif
et al., 2021; Suprasanna et al., 2021) while others can exploit already
existing variability (Begna, 2021). The main drawback of conventional

breeding is the generation time required for screening potential
genotypes over the years in different environmental conditions
(Lasley et al., 1994; Prohens, 2011). For instance, mutation as an
ultimate source of variation consequently provides better
opportunities for novel genetic variability (Holme et al., 2019; Ahmar
et al., 2020). However, as a genetic improvement technique, induced
mutagenesis has long been an ineffectual approach to obtaining new
alleles of genes. This is mostly due to the necessity to generate and
evaluate massive populations of presumed mutants, the prevalence of
chimaeras, and the recessive character of mutations (Mba, 2013). With
the advancement of biotechnology, via the transgenic breeding
approach, successful desirable gene introduction into the host
organism has now been possible (Visarada et al., 2009). However, the
environmental and ethical issues have also imposed problems related to
the release of transgenic varieties (Dale et al., 2002; Snow et al., 2005).
Numerous reports from different committees have provided clear
evidence that contradicts the notion that transgenic crops had a
detrimental impact on the environment. (Genetically Engineered
Crops: Experiences and Prospects, 2016). But again, disagreements
among experts have imposed issues with the global dissemination of
transgenic crops. To create desirable variability in our crops, a more
sophisticated and time saving technology is indeed required (Figure 1).
The rise of molecular approaches such as marker-assisted breeding
(MAB), genome wide association mapping (GWAS), targeting induced
local lesions (TILLING), and others has rendered it simpler to evaluate
potential genotypes. Breeding schemes such as speed breeding (SB) and
rapid generation advancement (RGA) were developed to further
expedite generation advancement.

Along with the technological progression, the DNA/RNA repair
mechanisms viz., homologous direct repair (HDR) and non-
homologous end joining (NHEJ), genome editing techniques
were uncovered to create double-strand breaks. Over the years,
genome editing techniques have evolved, from mega nucleases
(MegNs) to zinc finger nucleases (ZFNs) and transcription
activator-like effector nucleases (TALENs). Recently, the genome

FIGURE 1
Evolution of major breeding techniques and their limitations.
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editing technique; clustered regularly interspaced short palindromic
repeats (CRISPR) made a scientific breakthrough for agricultural
applications. ZFNs and TALENs were regarded as first-generation
(Razzaq et al., 2019) while CRISPR is considered as a second-
generation editing tool and further revolutionized precision for
genome editing (Jinek et al., 2012; Doudna and Charpentier,
2014). For instance, speed breeding-CRISPR is one of the
techniques that can be implemented to hasten the generation
cycle and development of new cultivars (Samantara et al., 2022).
The primary objective of this review is to discuss the overall aspects
starting from the conventional breeding approaches to the modern
breeding tools (classified in different phases) considering the ease of
use and hastening the entire breeding programme in order to
generate novel desirable crop cultivars. This review also
highlighted previously applied tools, their drawbacks, mitigating
strategies and evolving technologies in the field of plant breeding.
Furthermore, the discussion here aims to investigate how plant
breeders are utilizing the most recent scientific tools and methods to
cultivate crops that are better equipped to survive the difficulties
encountered by an evolving environment and a growing population.

2 Phase I: unleashing nature’s potential:
conventional plant breeding

Plant breeding is critical in addressing our population’s rising
food demand along with upgrading nutrition (Borlaug, 1983; Huang

et al., 2002; Bouis and Saltzman, 2017). In addition, it has given us
the ability to develop and improve existing cultivars that are better
adapted to climate change and new disease strains. It has been
established that the domestication of food and animal crops
progresses together with human civilization (Gupta, 2004).
Historically, plant breeding has evolved from conventional to
genomics-assisted breeding. Conventional breeding entails
selection through phenotypic evaluation. Breeders use crossing
strategies to combine favorable attributes (reside in the genetic
background) from various yet related plants to a new variety
(Acquaah, 2015). The screening of certain traits would largely be
from a large set of populations. However, this type of breeding
process is laborious and time-consuming.

Mutation breeding contributed significantly to crop breeding by
creating evolutionary divergence (Yu et al., 1991; Kharkwal et al.,
2004; Oladosu et al., 2016). This has been successfully used across
various crops such as maize, barley, rice, lettuce, and other crops
(Stadler, 1928a; 1928b; Sawada et al., 2016; Yamatani et al., 2018). As
compared with conventional hybridization, mutation breeding has a
shorter time frame for varietal development (Saima Mir et al., 2021).
Breakthroughs in breeding have led to the discovery of novel
technologies for eliciting variation in target crops. Mutation
breeding is still utilized in conventional modern breeding today,
despite the more sophisticated procedures given by contemporary
biotechnology (Bado et al., 2013). Succeeding this method are other
advanced techniques such as Eco-TILLING, plant tissue culture, and
genetic engineering (Figure 2).

FIGURE 2
Breeding techniques across eras: tracing advances from tradition to innovation.
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2.1 Crop domestication

Domestication is a process of coevolution where wild species
were brought under human cultivation through artificial selection
which led to the differentiation and development of new species
(Fuller et al., 2014; Schaal, 2019; Chen et. al., 2021a). The
transformation occurred many times independently around the
world during the Neolithic period (Childe, 1949), where hunter-
gatherer tribes were settled as agricultural societies (Diamond, 2002;
Diamond and Bellwood, 2003) and manipulated the rise of modern
civilization (Chen et. al., 2021a). The spontaneous mutation had a
significant role in modifying the attributes of domesticated plants.
Significant changes in necessities, such as land for agriculture, food
demand, and the use of agricultural technologies, came from the
coevolution of civilization and the human race. As a result, the
necessary crops were eventually expanded from their restricted
growing zone to be produced in a newer, undiscovered location.
As a result, wild plant species were cultivated and favored plants
were chosen based on their requirements. Although many initiatives
are underway to broaden the genetic background of prominent
crops by introgression of genes from their wild relatives (Sadiki et al.,
2007). Yet there is a considerable gap slot in the knowledge of
forbears, origin and domestication time frames for different crops
(Meyer et al., 2012). To get a fuller insight into these unanswered
concerns regarding domestication, genomics and related disciplines
(transcriptomics and epigenomics) have resulted in new findings
(Barrera-Redondo et al., 2020). This demonstrates a bridge between
traditional and modern breeding approaches. One of the aspects of
domestication is de-domestication, also known as feralization,
which is a fascinating phenomenon in which there is a deliberate

establishment of a population of domesticated crops in the wild
(Figure 3). De-domestication research has helped in better grasping
the complexities of crop evolution, as well as the genetic novelties of
de-domesticates that are useful in current crop breeding (Wu et al.,
2021).

Humans have domesticated different plants in need of food,
fodder, fibre and tools throughout the past 12,000 years, which has
had an influence on human culture as well as germplasm under
domesticated species. Domestication is significant since it makes
plant species more accessible to agricultural development
programmes. During the phase of domestication, there is the role
of artificial as well as natural forces in selection which leads to major
changes (domestication syndrome) (Hammer, 1984) (Figure 3). This
includes for instance, 1) loss of dormancy [in Chenopodium, the
outer layer of the testa is accountable for the black appearance of
wild seeds which is diminished or nonexistent in domesticates,
resulting in pale-colored seeds (Wilson, 1981; Bruno, 2006)] 2)
reduced toxins (wild potato tubers contain amounts of bitter
glycoalkaloids that may be hazardous to humans (Johns and
Alonso, 1990)] 3) increase in size (Pericarps and placentas of
near-isogenic tomato fruits with small vs. big fruits have cells of
similar size, but the giant fruits have more cells (Cong et al., 2002)].
Therefore, domestication is regarded as the most crucial and centric
method of plant breeding (Table 1) since all other breeding methods
become relevant only after it has been domesticated with success.
Many of the crops under current cultivation have been domesticated
from ancient times. It alleviates a significant number of problems
posed by intensive agriculture. A better comprehension of the
development of adaptation among crop species might lead to
novel ideas for developing new varieties/species that can address

FIGURE 3
Domestication and de-domestication: transformations in plant traits.
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TABLE 1 Application of different classical techniques in crop improvement.

Crops Traits improved Target genes Remarks References

Domestication

Rice

Plant architecture Prostrate growth 1 (PROG1)
Upright plant growth

Jin et al. (2008)

Tan et al. (2008)

Number of grains per
panicle

Frizzy panicle (FZP gene Boosted number of secondary
branches

Huang et al. (2018)

Seed shattering
SHA1 (a single dominant gene Shattering 1)/SH4 (Shattering 4) and QTL

present in chromosome 1(qSH1) controls seed shattering
Reduced shattering of seeds

Li et al. (2006)

Konishi et al. (2006)

Lin et al. (2007)

Sweeney and
McCouch (2007)

Vaughan et al. (2008)

Seed dormancy Seed dormancy 4 on chromosome 7 and OsG on chromosome 4
Genes governing seed

dormancy

Sugimoto et al. (2010)

Wang et al. (2018a)

Maize

Apical dominance tb1gene (Teosinte branched1)
Regulating the inflorescence

architecture

Doebley et al. (1997)

Cubas et al. (1999)

Increase in ear zfl2 (Zeafloricaula leafy2) Increase in ear rank number
Bomblies and Doebley

(2006)

Sexual conversion tru1 gene (tassels replace upper ears1)
Conversion of a tassel in

teosinte to an ear

Doebley et al. (1995)

Dong et al. (2017)

Chen et al. (2019)

Selection and hybridization

Maize Inflorescence Remosa 1 (ra1) gene Ear and tassel are suppressed

Vollbrecht et al. (2005)

Sigmon and Vollbrecht
(2010)

Xu et al. (2017)

Chen et al. (2019)

Hybrid crop breeding/cross breeding

Rice
Yield increases

Cross Breeding

Witcombe et al. (2013)

Increased spikelet number per panicle Panigrahi et al. (2019)

Wheat Grain yield Basnet et al. (2019)

Mutation breeding

Wheat

Dwarf height of plant Rht-B1b & Rht-D1b Single base pair mutation
Peng et al. (1999)

Ellis et al. (2002)

Rust resistance

Lr34 SNPs

Dakouri et al. (2010)

Krattinger et al. (2009)

Chauhan et al. (2015)

Rice

Increased 1000-grain
weight

GW2 gene
Loss of function mutation

Song et al. (2007)

Higher nitrogen use
efficiency

NRT NRT1.1B (SNP)
Hu et al. (2015)

Li et al. (2018a)

Disease resistance
(bacterial blight)

Os8N3 Loss of function mutation
Kim et al. (2019)
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present and potential environmental challenges sustainably
(Purugganan, 2019).

2.2 Crop introduction

The plant has been introduced when it has been brought by
humans across a vast geographic border (Richardson et al., 2000).
Richardson et al. (2000) differentiated between introduction and
invasion, proposing invasion as being spontaneous and without
human intervention [earlier supported by ecologists (Clement and
Foster, 1994)]. It is one of the easiest methods to use naturally
existing variability from one area to be introduced in an area of
absence. Plant variety to be introduced in new areas can be used
directly as an elite commercial variety without any alteration in its
genotype, referred as primary introduction. On the contrary, for
secondary introduction, the cultivar is reinforced in selection and
hybridization programmes and modified with some new characters.
A classic example of introduction is the dwarf wheat variety Sonora-
64 and Lerma Rojo as a primary introduction and Kalyan Sona and
Sonalika as a secondary introduction (Allard, 1999). Although it is a
beneficial method in adding variation to the gene pool in particular
areas, some instances in history which led to the introduction of
pests, weeds and fungal diseases along with crops unintentionally
(Knezevic, 2017).

2.3 Crop selection

The differential rate of reproduction of different genotypes is
referred to as selection (Lennox and Wilson, 1994). This can be
performed in the presence of variability. However, the effectiveness
of selection is mainly dependent on the presence of variability since
selection cannot create new variations and heritability of the trait
(Gregory, 2009). Evidence for selection can be seen from ancient
times when farmers used this in agriculture. Selection in crop
varieties has been reported by agriculturists, viz., Vans Mons in
Belgium, Andrew Knight in England and Cooper in the
United States. Publications from 1843 show the evidence for
selection practiced in the Isle of Jersey. Individual plant selection
was practiced by Patrick Shireff in wheat and oats at the same time
(Sneep, 1966). Hallet also reported individual plant selection in
wheat, oats and barley in the year 1857. Vilmorin came up with the
individual plant selection with progeny testing in the later years
(Vilmorin, 1930). Artificial selection represents a sophisticated way
of establishing the underlying genetic variation and hence the
evolvability of certain features (Table 1). It imparts a known
intensity and direction of selection to specific morphological
characters (Gregory, 2009).

2.4 Crop hybridisation

The genetic base of our current crop population has been
narrowed down, hence the need to create variation. The process
of hybridization aims to create variation in the population
(Anderson and Stebbins, 1954). In layman’s terms, this refers to
a method of crossing between individuals of different plant

populations that differ from each other in their heritable
characters (Harrison, 1990). The process involves crossing two
distinct genotypes, resulting in a Filial 1 (F1) hybrid. Within the
F1 generation, genes segregate and recombine, leading to the
formation of new gene combinations and thereby generating
genetic variability. Different methods can be used; however, most
continued inbreeding is done in the lines taken from the source
population which is coupled with selection. Hybridization allows
exploiting of heterosis (Timberlake, 2013). However, several factors
may affect hybridization frequency such as reproductive barriers
and incompatibilities between populations and taxon-specific
differences.

2.5 Mutation breeding

Sudden heritable change in the characteristics of the organism
that has not been acquired by genetic recombination is referred to as
mutation (Van Harten, 1998). The term mutation breeding
(“Mutationszuchtung”) was first coined by Freisleben and Lein
(Figure 4) in the year 1944 which refers to the development of
mutant lines to improve crops (Freisleben and Lein, 1944). Crop
improvement can only be achieved when enough variation is present
for the trait to help the breeder to exercise his breeding skills.
However, because of the overexploitation of commercial varieties,
the genetic base has narrowed down. Even if the desired variation is
present, it is present in wild relatives/old landraces which makes
breeding tedious and time taking to retrieve this variation. Mutation
breeding provides an opportunity without extensive upgrading
crossing and selection (Shu et al., 2012; Rani et al., 2016).
Induced mutagenesis serves as one of the most productive
strategies for creating evolutionary divergence as well as
identifying critical regulatory genes for commercially significant
features for crop improvement (Mehta and Basha, 2018;
Chaudhary et al., 2019a). Forward genetics as well as reverse
genetics both played crucial roles in achieving significant
improvement for various economic traits (Aklilu, 2021). The
former involves the identification of an induced or random
mutant gene that is responsible for a particular phenotype, while
in the latter the function of a gene is not known (Jankowicz-Cieslak
and Till, 2015).

Gene inactivation has been implemented extensively to figure
out the role of the unknown gene in different crops. To inactivate
endogenous genes, T-DNA or transposon is injected into the gene to
modify and tag it (Munoz-Lopez and Garcia-Perez, 2010; Kyndt
et al., 2015). Insertional mutagenesis in crops is commonly used in
crop improvement, particularly for creating disease-resistant
varieties. The inserted DNA often contains genes that confer
resistance to specific pathogens, making the plant more resistant
to disease (Gachomo et al., 2003; Webb et al., 2006). However,
insertional mutagenesis can also have unintended consequences,
such as altering the expression of important genes and leading to
unexpected phenotypic changes in the plant (Miki et al., 2009;
Schnell et al., 2015). In addition, these techniques require
effective plant transformation, which is only accessible in a few
crops, prominently maize and rice (Kolesnik et al., 2004). This led to
the discovery of a new approach, “TILLING,” which is now
preferred over other methods of reverse genetics.
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Although physical and chemical-induced mutagenesis have
expedited crop improvement (Mba et al., 2010; Mostafa, 2011;
Kozgar et al., 2012), these approaches are still less popular due to
random mutation and its expensive nature. In contrast, innovations
in genome editing techniques have reimagined the ability to
accurately manufacture a specific modification in the genome.

3 Phase II: molecular and advanced
plant breeding technology

3.1 Marker-assisted selection

In today’s world, molecular markers provide significant
potential in terms of systems, creative and enhanced genetic
mapping methodologies. In 1986, the first authentic restriction
fragment length polymorphism (RFLP) map in an agricultural
crop (tomato) was generated (Bernatzky and Tanksley, 1986).
The advantages of MAS included assessing plants at the
beginning of the growing season, screening several qualities that
would ordinarily be epistatic with one another, deterministically
removing linkage drag, and fast retrieving the genotype of a
recurring parent (Tanksley et al., 1989). Even the technological
constraints of early RFLPs seemed to be overcome as newer and
simpler molecular marker systems like RAPDs (Williams et al.,
1990) AFLPs (Vos et al., 1995), and microsatellites (Akkaya et al.,
1992) were developed. Within a few years, high-density DNA
marker maps for nearly every key crop species had been created
(O’Brien, 1993), each one promising the use of strategic MAS to
supplement, if not replace, traditional plant breeding strategies. This
allows plant breeders to make more informed decisions about which
plants to use in their breeding programs, leading to faster and more

effective improvement of crops (Garrett et al., 2017; Boopathi, 2020).
MAS can also be used to reduce the threat of inadvertently
integrating undesirable characteristics into the genome
(Bhatnagar-Mathur et al., 2015). Soon after, QTL mapping rose
to prominence, facilitating the precise mapping of genetic loci
influencing complex characteristics (Phillips and Vasil, 2003).
Before the emergence of molecular markers, the concept of
promptly identifying the loci driving polygenic characteristics
appeared to be a utopian dream.

3.2 QTL mapping

Quantitative trait locus (QTL) mapping is a strong technique for
the investigation of complex attributes in plants. It is the way of
discovering particular locations in the genome that are accountable
for variation in a certain characteristic of relevance (Mather, 1938).
QTL mapping involves several steps, including the identification of
phenotypic variation in a population of individuals, the genotyping
of those individuals, and the statistical analysis of the genotype-
phenotype data to identify QTLs (Dhingani et al., 2015). The first
step in QTL mapping is to generate a mapping population, which
can be done by crossing two parental lines with contrasting
phenotypes or by selecting individuals from a natural population
with phenotypic variation.

Once the mapping population is generated, the phenotypic data
is collected, and the individuals are genotyped using molecular
markers, such as SNPs or SSRs (Park et al., 2021). The markers
are used to construct a genetic map of the genome, which provides a
framework for the location of the QTLs. The next step is to perform
a statistical analysis of the genotype-phenotype data to identify
QTLs. The most commonly used method for QTL mapping is

FIGURE 4
Timeline of milestones in mutation breeding.
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linkage analysis, which compares the phenotypic data with the
molecular markers to identify regions of the genome that are
associated with the phenotypic variation (Akond et al., 2019).
Once the QTLs are identified, further fine-mapping can be done
to narrow down the chromosomal region relevant to the trait
variation (Raihan et al., 2016b). QTL mapping has been used
effectively in various crops, including rice, maize, and tomato,
and has revealed insightful information into the genetic basis of
complex characteristics including yield, biotic and abiotic stress
resistance (Bai et al., 2018; Yadav et al., 2019; Saleem et al., 2020;
Goering et al., 2021). In addition, QTL mapping has also been used
to identify candidate genes for the targeted improvement of crops
(Luo et al., 2019b; Guo et al., 2019; Kumar et al., 2020). In
conclusion, QTL mapping provides valuable information for
plant breeding and improvement, as well as for understanding
the genetic basis of phenotypic variation.

The acronym MAGIC stands for “Multiparent Advanced
Generation Inter-Cross,” and it refers to the process of
establishing a population by crossing many distinct founder
parents across several generations in order to harness the genetic
diversity contained in the founding lines (Samantara et al., 2021).
Magic populations provide higher genetic variety and improved
possibilities for identifying the genetic basis of complex
characteristics by mixing many founding parents and allowing
for recombination over several generations (Huang et al., 2015).
Magic populations are exceedingly helpful for quantitative trait
mapping and genetic research. The increasing genetic diversity
and the enormous number of recombination events in these
populations improve the ability to discover and map quantitative
trait loci (QTL) associated with complex characteristics (Huynh
et al., 2018; Diaz et al., 2020).

3.3 Association mapping (AM)

The idea of linkage disequilibrium (LD) underpins association
mapping, which is the non-random association of alleles (gene
versions) at distinct loci (positions) on a chromosome (Joiret et al.,
2019). In the context of association mapping, LD refers to the fact that
some genetic variations tend to occur together more frequently than
expected by chance. Association mapping plays a crucial role in crop
improvement by identifying the genetic variation underlying traits of
interest in crops (Zhu et al., 2008). For example, association mapping
studies have identified genes that regulate grain size and weight, which
are important components of yield in cereal crops (Cockram et al.,
2010; Neumann et al., 2011; Sukumaran et al., 2012; Alipour and
Darvishzadeh, 2019; Alqudah et al., 2020) The goal of association
mapping is to identify the specific genetic variations that are most
likely to be associated with a particular phenotype, such as height,
weight, or susceptibility to a disease or abiotic stress (Poland et al.,
2011; Sehgal et al., 2015; Hanson et al., 2018). The approach is further
expanded to minor millets, offering a food security perspective (Babu
et al., 2014; Gupta et al., 2014; Puranik et al., 2020). Themethod can be
used to identify novel alleles and genes that can be used to improve
crops through conventional breeding methods or genetic engineering.

Additionally, association mapping enables researchers to
identify the relationships between the genetic makeup of crops
and the environment, allowing for the development of more

sustainable and resilient crop varieties. This information can be
used to design breeding programs that are better suited to the
specific environmental conditions faced by farmers. Some of the
main limitations of association mapping (Korte and Farlow, 2013;
Gupta et al., 2019a) include false positive results (AM can sometimes
produce false positive results, which means the association between
a particular genetic variation and a trait may be coincidental, rather
than causal, also may be due to confounding factors, such as
population structure, or to multiple testing errors), low statistical
power (AM studies often have low statistical power, that they are not
always able to detect the true associations between genetic variations
and traits, Missing data (AM requires high-quality genotyping data,
which is not always available and missing data can result in reduced
statistical power or can lead to the exclusion of important
individuals from the analysis), Complex trait analysis (these are
often influenced by multiple genetic variations, some of which may
be rare or have small effects). AM is not well suited for analyzing
these traits, as it can only identify common genetic variations that
have moderate to large effects, Cost and time: large numbers of
individuals are required to be genotyped and phenotype.

Integrating association mapping with a secondary mapping
population is a powerful strategy to validate and refine the findings
of association mapping. Secondary mapping populations have been
essential in enhancing crop breeding efforts in a variety of crops.
Secondary mapping populations, for example, have proved useful in
mapping and dissecting complex characteristics. Researchers found
quantitative trait loci (QTLs) linked with these qualities by crossing
divergent parental lines and analyzing the resultant segregating
populations, allowing for marker-assisted selection and the
generation of superior varieties. Consistent and overlapping
associations provide confidence in the validity of the markers and
associations. Further fine mapping and candidate gene analysis can be
conducted to narrow down the genomic regions and identify specific
genes associated with the trait. Secondary mapping populations have
been utilized in crops such as rice, maize, wheat, tomato, cotton and
soybean to map and confirm QTLs connected to characteristics such as
disease resistance, yield potential, fruit quality features, and abiotic stress
tolerance (Wissuwa et al., 2002; Niu et al., 2017; Chen et al., 2018).

The primary goal of NAM (Nested Association Mapping) is to
combine the advantages of linkagemapping with associationmapping. It
involves creating a population of recombinant inbred lines (RILs) by
crossing a common parent withmultiple diverse founder parents. It plays
a pivotal role in crop breeding by combining the benefits of linkage and
associationmapping, enabling trait dissection, facilitatingmarker-assisted
selection, broadening the genetic base, and serving as a resource for
functional genomics. These contributions enhance our understanding of
complex traits, accelerate breeding efforts, and drive the development of
improved crop varieties with desirable agronomic and quality traits.
Researchers may locate sections of the genome related to certain qualities
of interest by phenotyping the NAM population and genotyping it using
high-density markers (Yu et al., 2008; Gage et al., 2020).

3.4 TILLING (targeting induced local lesions
in genome)

TILLING is a non-transgenic high-throughput method
(Henikoff et al., 2004). It involves the creation of chemically
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induced point mutations in the genome with PCR-based screening
of the hetero duplex formed for crop improvement (McCallum et al.,
2000a). The word “targeting” refers to focusing on genes of interest,
usually taken as 1,500 bp in a single reaction. This technique
overcomes the limitations associated with other tools of reverse

genetics like insertional mutagenesis, RNA interference, and
transposons (McCallum et al., 2000b). TILLING can also be used
to study naturally present single nucleotide polymorphism in the
genes of interest as a variant named Eco-TILLING (Gilchrist et al.,
2006; Nieto et al., 2007; Ibarra et al., 2017). TILLING technique was

TABLE 2 Application of advanced breeding techniques in crop improvement.

Crops Traits improved Target genes Remarks References

QTL Mapping/Marker assisted selection

Rice Blast resistance Pi9, Pi2 Blast resistance is imparted by the hybrid of Hui 316
(restorer line) and Pi9, Pi2, respectively

Tian et al. (2019)

Wheat Drought tolerance QTL found on chromosome 2A QTLs for cell membrane stability, water content, and
photosynthesis

Malik and Malik
(2015)

Maize Earliness and yield QTL Chromosomes 5, 8, and 10 have QTLs Bouchez et al.
(2002)

European corn borer and
Mediterranean corn borer

42 SIR MQTL The two chromosomes with the highest SIR MQTL are
2 and 5. Fibre and hydroxycinnamate are cross-linked
to prevent mechanical harm from insects

Badji et al. (2018)

Maize rough dwarf disease
(MRDD)

QTL qMrdd QMrdd8 from X178 is introduced into top germplasm
using a conventional technique and MAS.

Xu et al. (2020)

Association Mapping

Wheat Karnal bunt resistance 13,098 SNPs Population size of 339 Gupta et al. (2019b)

Brassica Improving yield 74 significant QTNs detected important loci associated with seed per silique and
thousand-seed weight across the chromosomes of
rapeseed by QTL and GWAS studies

Khan et al. (2019)

Rice Abiotic stress NAC42 acts as a transcription factor that
regulates the expression of the nitrate
transporter gene

NUE-related agronomic traits Tang et al. (2019)

Maize Abiotic stress Identified candidate genes associated with
phosphorus deficiency tolerance

Metabolites under low Pi Luo et al. (2019a)

TILLING Approach

Wheat Powdery mildew resistance TaMlo Partial loss-of-function Acevedo-Garcia
et al. (2017)

Wheat (Triticum
turgidum)

Increased in amount of
amylose

SBEIIa The amalgamation of two non-sense mutations leads in
a high amylose phenotype

Sestili et al. (2015)

Rice Salt tolerance OsAKT1, OsHKT6, OsNSCC2, OsHAK11
and OsSOS1

Variation in membrane transport genes (expression
levels and protein structures)

Hwang et al. (2016)

Barley Changed starch phenotype MY1, GBSSI, LDA, SSI and SSIIa 29 novel alleles were discovered in five genes linked to
starch metabolism that are active in the endosperm
during grain filling

Sparla et al. (2014)

Groundnut Drought tolerance PLD Phospholipase D expression increase Guo et al. (2015)

Accelerated Plant Breeding Approach (Speed breeding)

Rice Achieved 4–5 generations in a year (Salt tolerance)

Speed Breeding

Rana et al. (2019)

Collard et al. (2017)

Wheat Achieved 4–6 generations in a year Mukade (1974)

Watson et al. (2018)

Oat Achieved 7 generations in a year Liu et al. (2016)

Chickpea Achieved 4–6 generations in a year O’connor et al.
(2013)

Brassica napus Achieved 5 generations in a year Watson et al. (2018)
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first discovered by McCallum in the late 1990s who worked on
Arabidopsis to characterize the two chromo methylase (CMT 2)
gene functions. The goal of TILLING is to introduce specific changes
into the DNA of crops to improve their traits, such as resistance to
pests and diseases, increased yield, and improved nutritional content
(Wang et al., 2012; Raihan et al., 2016a; Acevedo-Garcia et al., 2017)
(Table 2). The process involves chemically inducing errors in the
DNA and then screening for plants with the desired mutations.
TILLING can be used in conjunction with CRISPR/Cas9 to deliver
precise modifications to the genome and achieve particular breeding
goals.

4 Accelerated plant breeding
techniques

Traditional breeding is a time cumbersome process that includes
different important phases. Three to 7 years are required for crossing
and inbreeding to develop homozygous stable lines. Thereafter, four
to 5 years of testing and selection for traits like quality, pest and
disease resistance and yield are performed. Lastly, one to 3 years are
required before release; in the multiplication of seeds. However, the
period was reduced to half with the introduction of methods like
shuttle breeding (Rajaram et al., 2002; Ortiz et al., 2007), which
allowed the screening of 2 generations/year instead of one
generation (Figure 5). Another technology that rapidly produced
inbred lines without self-pollination cycles is doubled haploid
technology (Ren et al., 2017; Wu et al., 2020). This method
decreased the time for inbred making from 7 to 2 years.

Nevertheless, there are several limitations to using this
technology. For instance, there is no scope for early generation
selection, lack of recombination and its effectiveness varies across
crosses. While considering the larger scale of breeding programs,
doubled haploid breeding turns out to be expensive (Chaudhary
et al., 2019b; Chaikam and Prasanna, 2020).

Speed breeding innovation was stimulated by NASA, aiming to
cultivate wheat in space. This technique utilizes specialized
greenhouse facilities and carefully controlled lighting regimes to
provide optimal growth conditions, allowing for the rapid
acceleration of the breeding process. Usually, 22 h of light phase
at around 22°C and 2 h of the dark period at 17°C are given to
promote early flowering (Watson et al., 2018). For crops such as
Triticum, Hordeum and Cicer spp., speed breeding can accomplish
up to six cycles per year, resulting in faster selection and
development of new cultivars with improved traits such as yield,
disease resistance, and tolerance to environmental stress (Ghosh
et al., 2018; Samineni et al., 2020). Although for crops like canola
4 generation/year can be achieved, which is still commendable, while
working for pod-shattering phenotyping (Watson et al., 2018).
Therefore, speed breeding has huge scope when it comes to
doubling genetic gain and accelerated transfer of new alleles into
adapted material through rapid backcrossing. Tremendous research
is still going on in developing protocols for different crops like
pepper, cassava, amaranthus, etc. (Stetter et al., 2016; Souza et al.,
2018; Borovsky et al., 2020) (Table 2). DS Faraday was the first wheat
variety produced via speed breeding that had excellent protein
milling quality and resistance to PHS. It was released in
partnership with DOW Agrosciences. The technique involves

FIGURE 5
Comparison of accelerated breeding methods v/s traditional methods.
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repeated cycles of selection for grain dormancy and backcrossing
(Schwager, 2017). One of the key advancements in speed breeding’s
future is its integration with CRISPR technology and the
enhancement of transgenic techniques. Speed breeding will be
closely linked with the revolutionary gene-editing tool CRISPR,
allowing for more precise and efficient modifications in plant
genomes (Murovec et al., 2018; Bao et al., 2020).

5 Phase III: genome editing
technologies

This is a form of genetic manipulation in which DNA is
incorporated to, or removed/substituted from a living organism’s
genome for any desirable trait expression. In contrast to genetic
engineering, which inserts the target gene into the host organism at
random, genome editing targets the introduction to certain
predefined locations. A gene knockout occurs when a frameshift
mutation occurs in a gene, resulting in the cell no longer expressing
any functional protein. ZFNs, TALENS and CRISPR can be used for
gene knockouts. A gene knockdown is when a gene expression is
reduced but not eliminated. This is usually accomplished by
degrading or inhibiting the gene’s mRNA transcript from being
translated.

5.1 Exploitation of natural DNA repair system
in the host organism (through ZFNs, TALENs,
and CRISPR)

Using appropriate genome editing technology techniques,
double-stranded breaks may be generated. These DNA breaks
stimulate the cellular DNA repair processes, allowing site-specific
genomic changes to be introduced more easily (Rouet et al., 1994;
Choulika et al., 1995). Artemis’ unique nuclease actions result in the
formation of INDELs, rendering non-homologous end-joining
repair systems inappropriate for precise alterations (Chang and
Lieber, 2016). In situations where Homology-Directed Repair
(HDR) is involved, a process that relies on a matching pair of
chromosomes, the preservation of sequence information during the
repair process is exceptionally high, exhibiting either minimal loss or
no loss at all (known as the conservative type). At the site of the DSB,
a required gene from the donor DNA strand is inserted using the
homologous chromosome. Mammalian cells were formerly
presumed to repair potentially lethal chromosomal double-strand
breaks (DSBs) in part by non-homologous processes. Yet, it was later
discovered that DSBs can increase homologous recombination by
three or four orders of magnitude, suggesting that homology-
directed repair is possible (Liang et al., 1998). As a consequence,
the DNA-repair mechanism might be employed to insert the
requisite genetic material, allowing for high-precision genome
editing of a target cell. This type of genome editing can be
employed to insert new genes or wipe out existing ones (Mali
et al., 2013). Genome editing technologies can be categorized into
four major groups: 1) Meganucleases; 2) ZFNs; 4) TALENs; 4)
CRISPR/Cas9 system. However, the CRISPR/Cas9 system
predominates as the preeminent and extensively employed
methodology for genome editing.

The term “mega” is used to describe a massive recognition site.
Because they are endonucleases, this location usually only appears
once in each genome (Gallagher et al., 2014). The LAGLIDADG
family contains the most well-known meganucleases proteins.
LAGLIDADG proteins have one of two main functions 1)
function as RNA maturase and 2) cleaving the exon-exon
junction sequence where their intron is located, earning them the
nickname “homing endonuclease.” This approach has a significant
benefit in terms of safety since it is less harmful to cells than other
naturally occurring restriction enzymes. Nevertheless, this
procedure is both expensive and time-consuming.

Construction of the first chimeric restriction endonucleases
gene by linking the finger domain to the non-specific cleavage
domain Fok 1(Flavobacterium okeanokoites) (Kim et al., 1996).
Zinc fingers use a mix of cysteine and histidine residues to
coordinate zinc ions. Each domain’s-helix (also known as the
“recognition helix”) may create sequence-specific interactions
with DNA bases. There were two distinct realms, one DNA-
binding domain (zinc finger motifs), which is made up of a
chain of two-finger modules and recognizes three nucleotide
sequences of DNA (one amino acid), and another DNA-
cleaving domain, which is made up of Fok I nuclease domain.
This method is described to have rapid disruption and integration
into any genomic loci. Also, it can create gene knockouts in
multiple cell lines. As compared to mega nucleases, this can
have an off-target effect, and construction is complex as it
needs two zinc finger motifs and a nuclease to create double-
strand breaks.

Transcription Activator-Like Effector Nucleases (TALEN), like
zinc finger nuclease is chimera that includes TALEs and Fok
1 endonuclease. The ability of TALENs to bind to DNA and
promote the expression of their target genes by mimicking
eukaryotic transcription factors is used as a DNA binding
domain, in conjunction with the cleaving domain Fok 1, which
causes double-stranded breaks. As compared to the Mega nucleases
and zinc finger nuclease (ZFNs), Transcription Activator-Like
Effector Nucleases TALEN is considered to have a simpler design
and a higher specificity. However, two caveats were recognized in
this technique 1) challenging to use in viral systems due to large
protein size and 2) repetitive sequences may induce undesirable
recombination events within the TALEN array.

The acronym CRISPR for Clustered Regularly Interspaced Short
Palindromic Repeats was first time used in 2002 by Jansen et al.
(2002). The word repeats refer to palindromic sequences which are
interspaced by unique sequences called spacer. These spacers are
molecular records in bacteria that are part of the virus genome which
has earlier attacked the bacteria. This system works like an antigen/
antibody system. The spacer is formed from protospacer sequences
present in the virus which gets into the bacterial genome in the form
of unique spacer sequences. Therefore, CRISPR is referred to as an
adaptive immunity system. This system consists of RNA molecules
and Cas enzymes that work together to identify and cut specific
DNA sequences.

CRISPR-associated protein (Cas9) is an RNA-guided
endonuclease that uses a single-guide RNA to cleave DNA at
specific target sites. CRISPR/Cas9-based genome editing relies on
creating a double-strand break in the DNA and then utilizing the
cell’s natural DNA repair mechanisms. Within the native CRISPR/

Frontiers in Genetics frontiersin.org11

Chawla et al. 10.3389/fgene.2023.1204585

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1204585


TABLE 3 Application of genome editing in crop improvement.

Target gene Trait improved Remarks References

Rice

(Hpt) Hygromycin phosphotransferase ZFNs Cantos et al. (2014)

Resistance to bacterial blight TALENs Li et al. (2012)

Fragrant rice Shan et al. (2015)

Resistance to disease & tolerant to abiotic stresses CRISPR/CAS9 Xie and Yang (2013)

Increase resistance to blast Liu et al. (2012)

Cold resistance resistant Shen et al. (2017)

Tiller spreading Miao et al. (2013)

Increase in grain number, grain size with thick erect panicles Li et al. (2016a)

High amylose content Sun et al. (2017)

Production of haploid plants Yao et al. (2018)

Resistance to rice root-knot nematode CRISPR/CAS9 Huang et al. (2023)

Reduce Cd accumulation Chen et al. (2023)

Improving fragrance efficiency Imran et al. (2023)

Agronomic traits and starch composition Zheng et al. (2023)

Increase Photosynthesis Caddell et al. (2023)

Broad-spectrum disease resistance Liu et al. (2023)

Herbicide resistance CRISPR/CAS9 Sun et al. (2016)

Endo et al. (2016)

Butt et al. (2017)

Li et al. (2016b)

Shimatani et al. (2017)

Nutritional quality improvement CBEs Li et al. (2017a)

Enhance nitrogen use efficiency Lu and Zhu (2017)

Regulate senescence and death Zong et al. (2017)

Resistance to blast Ren et al. (2018)

Defence response Ren et al. (2018)

Pathogen-responsive gene ABEs Yan et al. (2018)

Della protein for plant height Hua et al. (2018)

Regulation of architecture of plant and grain yield Hua et al. (2018)

Amylose synthesis Hao et al. (2019)

Defence response Hao et al. (2019)

Wheat

TaMLO Powdery mildew disease resistance Shan et al. (2014)

TaDREB2 Dehydration responsive element Shan et al. (2014)

TaERF3 Ethylene responsive factor Shan et al. (2014)

TaGW2 Negative regulator of grain traits Wang et al. (2018b)

EDR1 Resistance to powdery mildew Zhang et al. (2017)

(Continued on following page)
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TABLE 3 (Continued) Application of genome editing in crop improvement.

Target gene Trait improved Remarks References

Rice

TaSPL13 Improve multiple agronomic traits Gupta et al. (2023)

SPO11-1 Fertility and synapsis Hyde et al. (2023)

Tamyb10 Pre-harvest sprouting-resistant red wheat Zhu et al. (2023)

Ppd-1 Spike architecture Errum et al. (2023)

Lipid metabolism CBEs Zong et al. (2017)

Panicle length and grain weight ABEs Li et al. (2018b)

Maize

ZmIPK1 Responsible for herbicide tolerance and reduction of phytate
content

ZFNs Shukla et al. (2009)

ZmGL2 Reduced epicuticular wax in leaves Char et al. (2015)

ZmMTL Production of haploids TALENs Kelliher et al. (2017)

ARGOS8 Expressed well under drought stress with increase in grain
yield

Shi et al. (2017)

ZmIPK1A, ZmIPK and ZmMRP4 Phytic acid synthesis Liang et al. (2014)

PSY1 Phytoene synthase Zhu et al. (2016)

Zmzb7 Knockout of gene resulted in albino plant Feng et al. (2016)

ZmTMS5 Thermosensitive genic male-sterile Li et al. (2017b)

Wx1 High amylopectin content Pioneer (2016)

ALS Herbicide resistance Svitashev et al. (2015)

ARGOS8 Drought stress tolerance Shi et al. (2017)

ipdC Promote maize growth Figueredo et al. (2023)

36 genes potentially involved in leaf
growth

10% increase in leaf size Impens et al. (2023)

pipeline BREEDIT Improve complex traits such as yield and drought tolerance Lorenzo et al. (2023)

First time multiplex gene editing CRISPR/Cas9 (tRNA-RNAprocessing
system)

Qi et al. (2016)

Chromosomal segregation CBEs Zong et al. (2017)

Tomato

Production of purple tomatoes TALENs Cermak et al. (2015)

Powdery mildew resistance CRISPR/Cas9 Nekrasov et al. (2017)

Bacterial speck resistance Ortigosa et al. (2019)

Tomato domestication Li et al. (2018c)

Earlier harvest time Soyk et al. (2017)

Parthenocarpy Klap et al. (2017)

Repression of fruit ripening Ito et al. (2015)

Prevents tomato fruit ripening Yang et al. (2017b)

Increase shelf life Yu et al. (2017)

Leaf shape variations and seedless fruits Ueta et al. (2017)

Drought tolerance Wang et al. (2017)

(Continued on following page)

Frontiers in Genetics frontiersin.org13

Chawla et al. 10.3389/fgene.2023.1204585

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1204585


Cas9 system, the mature crRNA and transactivating crRNA come
together to form a complex called tracrRNA: crRNA (Zhan et al.,
2014). This complex serves as a guide for Cas9, directing it to the
desired location on the DNA. While Cas9 is widely known, there are
other forms of Cas proteins with distinct properties and functions.
For example, Cas1 and Cas2 are involved in the adaptation phase of
CRISPR systems, while Cas3 plays a role in the destruction of foreign
DNA. Cas12 (Cpf1) is another variant that cleaves DNA with
staggered ends, and Cas13 proteins target and cleave RNA
molecules instead of DNA. Scientists have adapted this system
for use in a wide range of organisms to precisely and efficiently

edit their genomes. The ability to edit genes with unprecedented
precision and ease has opened up many new possibilities for basic
research and applied biotechnology.

CRISPR/Cas technology has significant potential for crop
improvement by enabling precise and targeted genetic
modifications in crops (Table 3). This technology has several
advantages over traditional breeding methods, including speed,
precision, and accuracy. With CRISPR/Cas, scientists can target
specific genes in crop plants and make precise modifications, such as
creating mutations or introducing new traits, without the need for
introducing foreign DNA. This system consists of RNA molecules

TABLE 3 (Continued) Application of genome editing in crop improvement.

Target gene Trait improved Remarks References

Rice

PSY1, MYB12, and SGR1 Fruit colour-related genes Yang et al. (2023)

SlATG5 Resistance to Botrytis cinerea Li et al. (2023)

SlHyPRP1 Multi-stress tolerance Tran et al. (2023)

SlDYT1 and SlGSTAA Male Sterility Zhou et al. (2023)

Herbicide resistance CBEs Veillet et al. (2019)

SlRIN Tomato fruit ripening ABEs Niu et al. (2023)

Soyabean

High oleic acid contents TALENs Haun et al. (2014)

High oleic & low linoleic contents Demorest et al. (2016)

Herbicide resistance CRISPR/Cas9 Li et al. (2015)

Disease resistance against Phytophthora sojae Fang and Tyler (2016)

Flowering time Cai et al. (2018)

Carotenoid biosynthesis Du et al. (2016)

Potato

Minimizing reducing sugars TALENs Clasen et al. (2016)

Herbicide resistance CRISPR/Cas9 Butler et al. (2016)

High amylopectin content Andersson et al. (2017)

Herbicide resistance Veillet et al. (2019)

VInv Quality of potato tubers Sattar et al. (2023)

VInv and AS1 Reduced Browning Ly et al. (2023)

Sugarcane

Improved cell wall composition TALENs Jung and Altpeter
(2016)

Improved efficiency of saccharification Kannan et al. (2018)

Arabidopsis

MIR169a Drought tolerance CRISPR/Cas9 Zhao et al. (2016)

Turnip mosaic virus (TuMV) resistance CRISPR/Cas9 Pyott et al. (2016)

Increased stomatal closure against abscisic acid CRISPR/Cas9 Osakabe et al. (2016)

High-light acclimation and photomorphogenesis CRISPR/Cas9 Atanasov et al. (2023)
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and Cas enzymes that work together to identify and cut specific
DNA sequences. Scientists have adapted this system for use in a wide
range of organisms, including plants, to precisely and efficiently edit
their genomes. The ability to edit genes with unprecedented
precision and ease has opened up many new possibilities for
basic research and applied biotechnology. One application of
CRISPR/Cas in crop improvement is to enhance the nutritional
value of crops (Zhu et al., 2019). For example, researchers have used
CRISPR/Cas to increase the iron content in rice, which is a
significant dietary source of iron for many people. While
CRISPR/Cas technology holds tremendous potential for genome
editing, there are also some limitations and challenges that need to
be addressed (Chen et al., 2021b; Yumlu and Stumm, 2021). This
involves off-target effects (sometimes cut DNA at unintended
locations, leading to unintended mutations), mosaicism,
challenges in delivering methods, etc. Despite these challenges,
researchers and companies around the world are working to
overcome these limitations and leverage the potential of CRISPR/
Cas technology for a wide range of applications.

5.2 Base editing

After the discovery of CRISPR/Cas9 system, another mechanism
called base editing has also become a popular tool for genome
editing. Base editing is revolutionizing crop improvement by
allowing alteration (Gaudelli et al., 2017) of the genome by
making specific changes to the DNA base pairs (Komor et al.,
2016; Porto et al., 2020). This technology can be used to change
one DNA letter into another, which can then lead to new traits or
characteristics appearing in the plants (Henikoff and Comai, 2003).
Base editors can make precise, single-nucleotide changes to the
genome without inducing double-stranded breaks (Rees and Liu,
2018; Molla and Yang, 2019). This makes base editing an attractive
alternative to traditional CRISPR/Cas9 methods, which often result
in unwanted indels. Base editors are made up of two components: a
CRISPR protein that can be configured to target a particular position
in the genome and an enzyme that can chemically alter the DNA
base at that position. The most often used base editors are cytosine
base editors (CBEs) and adenine base editors (ABEs), which are used
to change a C-G base pair to a T-A base pair or an A-T base pair to a
G-C base pair, respectively. CBEs use a modified version of the
CRISPR protein Cas9 that has been fused to a cytidine deaminase
enzyme (Li et al., 2018a). The deaminase enzyme converts the C base
to a U base, and then the DNA repair machinery in the cell converts
the U to a T, resulting in a C to T base change (Zhang et al., 2020).
ABEs, on the other hand, employ a separate enzyme known as an
adenine deaminase to convert an A base to an inosine base, which
the DNA repair machinery interprets as a G base, resulting in an A
to G base conversion (Kang et al., 2018; Hua et al., 2020).

The benefits of base editing include its precision, efficiency and
lack of off-target effects (Lee et al., 2020). Base editing has already
had a positive impact on crop production, and it is predicted to play
a more significant role in the future as more genes are discovered
that can be edited with this technique (Eid et al., 2018). Crop
improvement by base editing is a technique that entails
amending DNA to enhance its attributes (Bharat et al., 2020).
This can be done by either mutating existing genes or adding

new ones. Base editing is different from traditional methods of
genetic modification, as it does not require the use of foreign DNA.
This overcomes regulatory issues (Jones, 2015). There are several
ways in which base editing can be used to improve crops. One way is
by increasing resistance to biotic and abiotic stress (Zhang et al.,
2018a; Sood et al., 2022). This can be done by altering the genes that
encode proteins that are targets of disease-causing organisms.
Another way is by improving the nutritional value of crops. This
can be done by modifying the genes that control the production of
vitamins and minerals (Kumar et al., 2021).

5.3 Prime editing: unlocking the precision of
genetic rewriting

It is a breakthrough advanced technique over existing CRISPR/
Cas9 tools. Prime editing is complementary to base editing to correct
small mutations including indels (Anzalone et al., 2019; Kantor
et al., 2020). CRISPR/CAS9 as stated above causes double-stranded
breaks. However, it was seen in a few studies that double-stranded
breaks are not safe (Carusillo and Mussolino, 2020; Ochoa-Sanchez
et al., 2021). It can cause mutagenic activity, a complex mix of
undesirable products or may cause translocation of DNA. These
breaks can trigger P53 activity which can induce cell death (Shen and
Li, 2022). On the other hand, base editing is limited to four possible
transition mutations (C to T, A to G, T to C, and G to A) and is still
prone to off-target effects. Base editing has not proved to be useful in
the case of mutations like insertions and deletions. Therefore, to
overcome these obstacles, prime editing was developed (Marzec and
Hensel, 2020).

Prime editors have three major components referred as pegRNA,
CAS9 H840A nickase fused with M-MLV reverse transcriptase and
single guide RNA. Guide RNA is lengthened including mutant target
recognition sequences and correction sequences which in
combination are referred as pegRNA. The CAS enzyme domains
are also modified like in base editing such that only one strand is cut.
Finally, instead of a base editing domain, a reverse transcriptase
activity domain uses the corrected sequence of the peg RNA as a
template to synthesize the corresponding stretch of the DNA strand.
The newly synthesized stretch of DNA will then bind to the
untampered original DNA along with creating a flap that the
stretch of new DNA is supposed to replace. The flap will be cut
out since it is an unnatural DNA structure. Although a new segment
of DNA contains the correct DNA sequence, the other segment still
does not. This mismatch will be corrected by a triggered natural repair
mechanism (Marzec et al., 2020; Molla et al., 2021; Hillary and Ceasar,
2022). Its major inference lies in the precise gene editing with reduced
off-target mutations and wider scope of applications. This technique
can bring revolution by allowing for precise alterations to specific
genes which will eventually increase yield by providing tolerance to
biotic and abiotic stress. (Gao, 2021; Lu et al., 2022).

5.4 Achievements of genome editing in plant
breeding

Genome editing in plant breeding has achieved several desirable
outcomes (Table 2). Most significant is breeding for resistance in
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staple crops like rice and wheat by modifying the genes responsible
for susceptibility to various diseases (Wang et al., 2014; Zhou et al.,
2015; Wang et al., 2018b). Additionally, genome editing can modify
genes that control yield-related traits (Ainley et al., 2013; Zhang
et al., 2018a; Zong et al., 2018). For instance, researchers have altered
a gene in rice that controls the plant’s sensitivity to nitrogen using
CRISPR/Cas9, resulting in plants that yield more with less fertilizer.
The nutritional content of crops may be improved through genome
editing (Connorton et al., 2017). For instance, by altering the genes
that produce beta-carotene in rice, scientists were able to produce a
type of grain known as “golden rice” that had greater quantities of
vitamin A (Busch and Schneeberger, 2019). Another important
application is for adaptation to environmental stress. This may
lead to crops that are more resilient to the difficulties posed by a
changing climate (Zhang et al., 2014).

5.5 Unlocking nature’s blueprint: target
genes for precision genome editing

CRISPR techniques have revolutionized genome editing and have
made it possible to target any gene of interest with a high degree of
precision. Researchers can modify genes involved in various traits,
such as disease resistance, quality attributes, yield, and many other
desired characteristics. For instance, TaDREB2 is a transcription
factor that plays a crucial role in drought stress response in wheat.
It is involved in regulating the expression of stress-responsive genes
that help the plant cope with water deficit conditions. Additionally,
TaERF3 is another transcription factor that is associated with abiotic
stress responses, including drought, heat and salinity stresses in wheat
(Kim et al., 2018). In maize, themLG1,UB2 andUB3 genes have been
utilized for the development of a haploid-inducer mediated genome
editing system (Wang et al., 2019a). The mLG1 gene is a maternally
expressed gene that plays a role in inhibiting embryo development
when it is paternally inherited. The UB2 gene is a ubiquitin-
conjugating enzyme that is involved in protein degradation and
regulation. The UB3 gene is a ubiquitin ligase that plays a role in
the degradation of proteins through the ubiquitin-proteasome system.
In tomato crops, one of the target genes for improving quality traits is
ACS2 (Ito et al., 2021). The purpose of editing this gene is to regulate
the ripening process and extend the shelf life of tomatoes (Peng et al.,
2022). For herbicide tolerance, the target gene is EPSPS (5-
enolpyruvylshikimate-3-phosphate synthase). By editing this gene,
scientists aim to confer resistance to the widely used herbicide
glyphosate (Achary et al., 2020; Wang et al., 2021a; Li et al., 2021).
CRISPR technology provides a powerful tool for gene editing
(Table 3), but there are still challenges to overcome, such as off-
target effects and ensuring precise and accurate edits. However,
ongoing research and advancements in CRISPR techniques
continue to improve the precision and efficiency of gene editing,
making it a promising technology for various applications.

6 Phase IV: beyond and next-
generation smart crops

These are sophisticated agricultural technologies and
approaches that increase crop productivity, efficiency, and

sustainability. This includes various techniques like Haplotype
crop breeding, genomic selection, use of secondary population,
artificial intelligence (AI), etc.

6.1 Genomic selection

Genomic selection utilizes genomic information to predict the
performance of plants and select the best individuals for
breeding. Genomic selection has been used in a variety of
crops to advance breeding programmes and increase crop
improvement efficiency (Benavente and Giménez, 2021).
Genomic selection, for example, has been used in cereal
breeding to improve yield, drought tolerance, disease
resistance, and nutritional quality (Haile et al., 2020; Simmons
et al., 2021). Breeders can find maize lines with high genomic
estimated breeding values (GEBVs) for these characteristics by
utilizing genomic information and marker-assisted selection,
accelerating the production of better varieties (Crossa et al.,
2017). GS method facilitates the early selection of individuals
with favorable genomic profiles, resulting in the production of
high-performing wheat cultivars (Sinha et al., 2021). By
harnessing the power of genomics, breeders can make more
accurate selections, enhance breeding efficiency, and develop
improved crop varieties with desired traits.

6.2 Haplotype-based breeding

It is a cutting-edge technology that entails discovering and
choosing precise allele combinations within certain genomic
areas known as haplotypes to obtain desired crop attributes
(Bhat et al., 2021). For instance, in wheat the method may be
used to boost disease resistance against rusts and Fusarium head
blight, as well as attributes such as drought tolerance and yield
potential (Athiyannan et al., 2022; Alemu et al., 2023). Advances in
genomic technologies, such as high-throughput genotyping and
genome sequencing, have facilitated the identification and
characterization of haplotypes in rice. This has opened up new
opportunities for breeders to accelerate the development of
improved rice varieties by incorporating favorable haplotypes
into their breeding programs. It helps in developing blast-
resistant, bacterial blight-resistant, and submergence-tolerant
cultivars while also increasing grain quality traits (Tanweer et al.,
2015; Verma et al., 2023). Few studies have highlighted the use of
haplotype analysis to understand germplasm diversity in maize
breeding programs. Haplotype-based approaches provide
advantages over single-marker-based methods in assessing
population structure and capturing additional information
compared to individual SNPs (Coffman et al., 2020). Improved
features in maize include drought tolerance, insect resistance, and
nitrogen usage efficiency (Simmons et al., 2021). Similarly,
haplotype-based breeding may be used to improve disease
resistance, qualitative traits, and stress tolerance in diverse crops
such as tomato, potato, cotton, and barley. Various studies have
discussed the advantages of haplotype-based breeding, such as its
ability to capture the combined effects of multiple genetic variants
and its potential to increase the accuracy of trait selection.
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6.3 Omics-based breeding

Omics-based plant breeding is the use of high-throughput
technology and data-driven methodologies for investigating and
altering plant genetic and molecular features for crop development.
Omics-based approaches have found successful applications in
various crops, and one notable example is in the field of rice
breeding (Dai et al., 2022; Zaghum et al., 2022). Genomics has
proven critical in decoding the rice genome sequence and
discovering genes linked to crucial agronomic features (Peng
et al., 2020). Transcriptomic studies on rice have shown gene
expression patterns at various developmental stages and stress
responses. Understanding the activities of individual proteins
involved in grain quality and stress tolerance processes has been
improved by proteomics (Choi, 2019). Metabolomics has aided in
the discovery of compounds associated with nutritional
characteristics and stress responses in rice. Overall, in crop
breeding programmes, these omics-based techniques have aided
in the identification of candidate genes, molecular markers, and
important pathways linked with desirable features (Alotaibi et al.,
2021; Cao et al., 2022; Shen et al., 2022).

7 Convergence of genome-assisted
breeding and genome editing

The confluence of genome-assisted breeding and genome
editing entails merging genomic information with precise gene
editing methods to boost agricultural yield. Genome-assisted
breeding assists in finding significant genes linked with desired
qualities, while genome editing enables precise gene alteration. By
combining these techniques, breeders can minimize the time and
resources necessary for the production of superior cultivars with
increased attributes, as well as enable the transfer of beneficial
genetic variants from wild relatives. This confluence provides a
tremendous tool for expediting crop development efforts and
tackling agricultural concerns.

8 Empowering food security with
resilient orphan crops through diverse
breeding approaches

A range of orphan crop species exhibit regional significance
and possess stress resilient traits in order to thrive extreme climatic
conditions owing to their relevant genes and stress combating
mechanisms. However, these species lack global trade and
substantial recognition from a research standpoint. Hence,
research initiatives attempt to exploit their potential to improve
major crops, address nutritional challenges and enhance food
system sustainability (Dawson et al., 2019; Yaqoob et al., 2023).
Lemmon et al. (2018) elucidated the viability of different breeding
approaches and underscored the significance of allocating
resources to study and acquire further knowledge concerning
genomes, genes, and cellular mechanisms underlying plant
characteristics. Several conventional as well as advanced
breeding techniques have been employed to enhance the
desirable traits of orphan crops yet.

Historically, the genetic enhancement of orphan crops were
primarily restricted to conventional breeding practices,
employing pedigree-based selection methods to enhance
desired traits such as larger seed size, increased yield, ease of
propagation, reduced seed dispersal, etc. The emphasis was
predominantly placed on improving the domestication process
of these crops (Kamenya, et al., 2021). For orphan legumes (pea,
lupin) mutation breeding and interspecific introgression have
been successful in generating genetic diversity leading to
favorable traits like stress tolerance, high yield, etc.,
(Chongtham et al., 2022). A robust repertoire of molecular
markers serves as a crucial asset in the breeding endeavors of
all crop species; however, it is often deficient in broad array of
orphan crops. Among the techniques employed for molecular
marker development in orphan crops, Diversity Arrays
Technology has emerged as a highly significant method. The
advent of this technology ushered in a paradigm shift in the
genetic profiling and establishment of genetic linkages in several
crops (predominantly pigeon pea and cassava) that were
previously deemed as orphaned, a span of approximately
20 years ago (Kamenya, et al., 2021). However, with the
sequencing of more than 35 orphan crops, rapid SNP
discovery has become possible (finger millet, Bambara
groundnut, lupin, etc.). Certain researchers have pinpointed
specific genes or quantitative trait loci (QTLs) associated with
adaptive traits in orphan legume species. These genetic elements
possess the potential to be utilized in crop enhancement efforts to
confer stress tolerance onto other cultivated crops (Chongtham
et al., 2022). Although research on speed breeding in orphan
crops is still limited, there are a few examples where it has been
explored. For instance, chickpea, peanut and amaranth speed
breeding protocol has been developed (Chiurugwi et al., 2019).
Speed breeding could be used to shorten the breeding cycle of
fonio and facilitate the development of improved varieties with
increased yield, disease resistance, and drought tolerance
(Ibrahim Bio Yerima and Achigan-Dako, 2021). Some
initiatives have been there for implementing TILLING in
various orphan crops like pearl millet, teff, cassava, mung
bean, chickpea, banana, etc. (Esfeld et al., 2013). Genome
editing has been exploited in orphan crops like sorghum
(modulating flowering time), foxtail millet (male sterility),
chickpea (draught tolerance), etc. (Venezia and Creasey
Krainer, 2021).

These days, with the advent of genome editing techniques,
these underutilized crops are undergone targeted improvements,
leading to advancements in their characteristics and overall
performance (Table 4). Enhancing essential nutrients such as
iron, zinc, a range of vitamins can have significant impacts on
improving the nutritional quality of diets that heavily rely on these
crops (Tadele, 2018). A study showed that in the future, the
CRISPR/Cas9 tool holds potential for application in the Ca
transporter genes of finger millet. The docking study proposed
that EcCBL4 has a strong binding affinity with EcCIPK24 and
might play a significant role in the accumulation of Ca in seeds
(Chinchole et al., 2017). Classical domesticated genes possess
characteristics that make them ideal candidates for Cas base
editing. They are well characterized, exhibit simple genetic
architecture, and typically have a monogenetic nature -(Rasheed
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et al., 2021). Studies have shown the role of TALENs to target a
gene involved in the lignin biosynthesis pathway in pearl millet. By
knocking out this gene, they achieved improved resistance against
downy mildew, a significant foliar disease in pearl millet (Maurya
et al., 2022). Cassava yield is significantly affected by disease-
causing pathogens nearly around 50% of total yield loss attributed
to the African cassava mosaic virus (ACMV) and cassava brown
streak disease (CBSD). Hence, targeted mutation using Cas9/
gRNA, have been developed to address such challenges. Orphan
crop genomes were annotated through whole-genome sequencing
and their transcriptomes were generated. In the annotation
process, transcriptomes from the same species were preferred,
as seen in examples like the african eggplant, wild mustard, tef, etc.
(Cannarozzi et al., 2014; Bhardwaj et al., 2015; Chen et al., 2021c).
However, in some cases, closely associated or model crop
transcriptomes were used, as in finger millet, which utilized
data from maize. RNA sequencing (RNA-seq) became the
method of choice for generating specific crop transcriptomes
(Ozsolak and Milos, 2011). Microarrays were the preferred
method before NGS technology for transcriptome analysis in
various orphan crops to uncover expression profiles associated
with abiotic stress resilience. Among the crops studied were
buckwheat, tef (Golisz et al., 2008), white lupine (Zhu et al.,

2010), etc. Another study detected 2,416 DEGs in quinoa
(Chenopodium quinoa) during salt stress profiling (Ranasinghe
et al., 2019). Additionally, transcription analysis in jute-mallow
helped identify genes related to drought stress response (Yang
et al., 2017a).

9 Conclusion and future thrust

The trend in plant breeding has evolved significantly over the
years, shifting from conventional breeding to more advanced
molecular breeding, and this shift is likely to continue in the
future with novel biotechnology tools. Traditional breeding relies
on the genetic diversity of the parent plants and necessitates
maturing plants and waiting for the next-generation to be
produced. While breakthroughs in biotechnology have
substantially improved breeding precision and speed, a shortage
of facilities and financial resources keeps conventional breeding still
in demand. Many breeders now use a combination of conventional
and molecular breeding techniques to produce crops with improved
traits. This has led to the development of new crop varieties that are
more resilient to disease, pests, and environmental stresses, with
better yields and improved nutritional quality. In summary, the

TABLE 4 Potential role of genome editing in orphan crops.

Crop Target gene Trait improved Remarks References

Sorghum Alpha-Kafirin gene family Increase digestibility and protein quality CRISPR/Cas Li et al. (2018d)

FLOWERING TIME (FT); Gibberellin 2-oxidase 5 (Ga2ox5) Flowering time Char et al. (2020)

Finger millet Bhlh57 Salinity resistance Babitha et al. (2015)

Foxtail millet Phytochrome C (PHYC) Photoperiodic flowering Yang et al. (2020)

DROOPY LEAF1 (DPY1) Plant architecture Zhao et al. (2020)

SiMTL Haploid embryo induction Cheng et al. (2021)

Sweet potato Granule-bound starch synthase I (GBSSI) Availability of more digestible sugars Wang et al. (2019b)

Starch branching enzyme II (SBEII)

Cassava Protein targeting to starch 1 (PTST1) Increase in digestible sugars Bull et al. (2018)

EPSPS Glyphosate tolerance Hummel et al. (2018)

Pigeon Pea CcFT8 Florigen producing gene Tribhuvan et al. (2020)

Quinoa WUSCHEL, BABY BOOM and LEAFY COTYLEDON1 Improve the transformation efficiency Wang et al. (2021b)

Lettuce GDP-L-galactose phosphorylase 1 (GGP1) Increase in the vitamin C Zhang et al. (2018b)

GDP-L-galactose phosphorylase 2 (GGP2)

Yam Phytoene Desaturase (PDS) Carotenoid biosynthesis Syombua et al. (2020)

ERF (ethylene-responsive factor) Resistance to anthracnose Ntui et al. (2021)

Eggplant Polyphenol oxidase (PPO) Decreased browning Maioli et al. (2020)

Bambara groundnut KUP Abiotic stress tolerance Sharma et al. (2022)

Fonio DeSh1-9A Reduced seed shattering Abrouk et al. (2020)

Teff SEMIDWARF-1 (SD-1) Semi-dwarfism and lodging resistance Beyene et al. (2022)

OsSPL14, OsmiR397 Panicle branching trait Numan et al. (2021)

Watermelon Acetolactate synthase (ALS) Herbicide-resistant Tian et al. (2018)
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future thrust of plant breeding will involve developing crop varieties
that are resilient to climate change, provide nutritional security, are
sustainable, use precision agriculture techniques, utilize gene editing
technologies, leverage genomics and big data, and involve
collaborative research efforts.
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