642 research outputs found
Quantifying Observational Projection Effects Using Molecular Cloud Simulations
The physical properties of molecular clouds are often measured using spectral-line observations, which provide the only probes of the clouds' velocity structure. It is hard, though, to assess whether and to what extent intensity features in position-position-velocity (PPV) space correspond to "real" density structures in position-position-position (PPP) space. In this paper, we create synthetic molecular cloud spectral-line maps of simulated molecular clouds, and present a new technique for measuring the reality of individual PPV structures. Using a dendrogram algorithm, we identify hierarchical structures in both PPP and PPV space. Our procedure projects density structures identified in PPP space into corresponding intensity structures in PPV space and then measures the geometric overlap of the projected structures with structures identified from the synthetic observation. The fractional overlap between a PPP and PPV structure quantifies how well the synthetic observation recovers information about the three-dimensional structure. Applying this machinery to a set of synthetic observations of CO isotopes, we measure how well spectral-line measurements recover mass, size, velocity dispersion, and virial parameter for a simulated star-forming region. By disabling various steps of our analysis, we investigate how much opacity, chemistry, and gravity affect measurements of physical properties extracted from PPV cubes. For the simulations used here, which offer a decent, but not perfect, match to the properties of a star-forming region like Perseus, our results suggest that superposition induces a ~40% uncertainty in masses, sizes, and velocity dispersions derived fromCO (J = 1-0). As would be expected, superposition and confusion is worst in regions where the filling factor of emitting material is large. The virial parameter is most affected by superposition, such that estimates of the virial parameter derived from PPV and PPP information typically disagree by a factor of ~2. This uncertainty makes it particularly difficult to judge whether gravitational or kinetic energy dominate a given region, since the majority of virial parameter measurements fall within a factor of two of the equipartition level α ~ 2.Astronom
Simulations of protostellar collapse using multigroup radiation hydrodynamics. I. The first collapse
Radiative transfer plays a major role in the process of star formation. Many
simulations of gravitational collapse of a cold gas cloud followed by the
formation of a protostellar core use a grey treatment of radiative transfer
coupled to the hydrodynamics. However, dust opacities which dominate extinction
show large variations as a function of frequency. In this paper, we used
frequency-dependent radiative transfer to investigate the influence of the
opacity variations on the properties of Larson's first core. We used a
multigroup M1 moment model in a 1D radiation hydrodynamics code to simulate the
spherically symmetric collapse of a 1 solar mass cloud core. Monochromatic dust
opacities for five different temperature ranges were used to compute Planck and
Rosseland means inside each frequency group. The results are very consistent
with previous studies and only small differences were observed between the grey
and multigroup simulations. For a same central density, the multigroup
simulations tend to produce first cores with a slightly higher radius and
central temperature. We also performed simulations of the collapse of a 10 and
0.1 solar mass cloud, which showed the properties of the first core to be
independent of the initial cloud mass, with again no major differences between
grey and multigroup models. For Larson's first collapse, where temperatures
remain below 2000 K, the vast majority of the radiation energy lies in the IR
regime and the system is optically thick. In this regime, the grey
approximation does a good job reproducing the correct opacities, as long as
there are no large opacity variations on scales much smaller than the width of
the Planck function. The multigroup method is however expected to yield more
important differences in the later stages of the collapse when high energy (UV
and X-ray) radiation is present and matter and radiation are strongly
decoupled.Comment: 9 pages, 5 figures, accepted for publication in A&
Interactions between brown-dwarf binaries and Sun-like stars
Several mechanisms have been proposed for the formation of brown dwarfs, but
there is as yet no consensus as to which -- if any -- are operative in nature.
Any theory of brown dwarf formation must explain the observed statistics of
brown dwarfs. These statistics are limited by selection effects, but they are
becoming increasingly discriminating. In particular, it appears (a) that brown
dwarfs that are secondaries to Sun-like stars tend to be on wide orbits, a\ga
100\,{\rm AU} (the Brown Dwarf Desert), and (b) that these brown dwarfs have a
significantly higher chance of being in a close (a\la 10\,{\rm AU}) binary
system with another brown dwarf than do brown dwarfs in the field. This then
raises the issue of whether these brown dwarfs have formed {\it in situ}, i.e.
by fragmentation of a circumstellar disc; or have formed elsewhere and
subsequently been captured. We present numerical simulations of the purely
gravitational interaction between a close brown-dwarf binary and a Sun-like
star. These simulations demonstrate that such interactions have a negligible
chance () of leading to the close brown-dwarf binary being captured by
the Sun-like star. Making the interactions dissipative by invoking the
hydrodynamic effects of attendant discs might alter this conclusion. However,
in order to explain the above statistics, this dissipation would have to favour
the capture of brown-dwarf binaries over single brown-dwarfs, and we present
arguments why this is unlikely. The simplest inference is that most brown-dwarf
binaries -- and therefore possibly also most single brown dwarfs -- form by
fragmentation of circumstellar discs around Sun-like protostars, with some of
them subsequently being ejected into the field.Comment: 10 pages, 8 figures, Accepted for publication in Astrophysics and
Space Scienc
The High-Order-Multiplicity of Unusually Wide M-dwarf Binaries: Eleven New Triple and Quadruple Systems
M-dwarfs in extremely wide binary systems are very rare, and may thus have
different formation processes from those found as single stars or close
binaries in the field. In this paper we search for close companions to a new
sample of 36 extremely wide M-dwarf binaries, covering a spectral type range of
M1 to M5 and a separation range of 600 - 6500 AU. We discover 10 new triple
systems and one new quadruple system. We carefully account for selection
effects including proper motion, magnitude limits, the detection of close
binaries in the SDSS, and other sample biases. The bias-corrected total
high-order-multiple fraction is 45% (+18%/-16%) and the bias-corrected
incidence of quadruple systems is < 5%, both statistically compatible with that
found for the more common close M-dwarf multiple systems. Almost all the
detected companions have similar masses to their primaries, although two very
low mass companions, including a candidate brown dwarf, are found at relatively
large separations. We find that the close-binary separation distribution is
strongly peaked towards < 30AU separations. There is marginally significant
evidence for a change in high-order M-dwarf multiplicity with binding energy
and total mass. We also find 2-sigma evidence of an unexpected increased
high-order-multiple fraction for the widest targets in our survey, with a
high-order-multiple fraction of 21% (+17%/-7%) for systems with separations up
to 2000AU, compared to 77% (+9%/-22%) for systems with separations > 4000AU.
These results suggest that the very widest M-dwarf binary systems need higher
masses to form or to survive.Comment: 11 pages, 14 figures, accepted for publication in Ap
Astrometric and photometric initial mass functions from the UKIDSS Galactic Clusters Survey: I The Pleiades
We present the results of a deep wide-field near-infrared survey of the
entire Pleiades cluster recently released as part of the UKIRT Infrared Deep
Sky (UKIDSS) Galactic Clusters Survey (GCS) Data Release 9 (DR9). We have
identified a sample of ~1000 Pleiades cluster member candidates combining
photometry in five near-infrared passbands and proper motions derived from the
multiple epochs provided by the UKIDSS GCS DR9. We also provide revised
membership for all previously published Pleiades low-mass stars and brown
dwarfs in the past decade recovered in the UKIDSS GCS DR9 Pleiades survey based
on the new photometry and astrometry provided by the GCS. We find no evidence
of K-band variability in the Pleiades members larger than ~0.08 mag. In
addition, we infer a substellar binary frequency of 22-31% in the 0.075-0.03
Msun range for separations less than ~100 au. We employed two independent but
complementary methods to derive the cluster luminosity and mass functions: a
probabilistic analysis and a more standard approach consisting of stricter
astrometric and photometric cuts. We found that the resulting luminosity and
mass functions obtained from both methods are very similar. We derive the
Pleiades mass function in the 0.6-0.03 Msun mass range and found that it is
best reproduced by a log-normal representation with a mean characteristic mass
of 0.24(+0.01-0.03) Msun, in agreement with earlier studies and the
extrapolation of the field mass function.Comment: MNRAS, in press: 17 pages, 11 figures, 4 tables in main text, 4
additional tables in appendix. Abstract and column names in Tables 3 and 4
corrected compared to MNRAS's accepted versio
An intuitionistic approach to scoring DNA sequences against transcription factor binding site motifs
Background: Transcription factors (TFs) control transcription by binding to specific regions of DNA called transcription factor binding sites (TFBSs). The identification of TFBSs is a crucial problem in computational biology and includes the subtask of predicting the location of known TFBS motifs in a given DNA sequence. It has previously been shown that, when scoring matches to known TFBS motifs, interdependencies between positions within a motif should be taken into account. However, this remains a challenging task owing to the fact that sequences similar to those of known TFBSs can occur by chance with a relatively high frequency. Here we present a new method for matching sequences to TFBS motifs based on intuitionistic fuzzy sets (IFS) theory, an approach that has been shown to be particularly appropriate for tackling problems that embody a high degree of uncertainty.
Results: We propose SCintuit, a new scoring method for measuring sequence-motif affinity based on IFS theory. Unlike existing methods that consider dependencies between positions, SCintuit is designed to prevent overestimation of less conserved positions of TFBSs. For a given pair of bases, SCintuit is computed not only as a function of their combined probability of occurrence, but also taking into account the individual importance of each single base at its corresponding position. We used SCintuit to identify known TFBSs in DNA sequences. Our method provides excellent results when dealing with both synthetic and real data, outperforming the sensitivity and the specificity of two existing methods in all the experiments we performed.
Conclusions: The results show that SCintuit improves the prediction quality for TFs of the existing approaches without compromising sensitivity. In addition, we show how SCintuit can be successfully applied to real research problems. In this study the reliability of the IFS theory for motif discovery tasks is proven
Is protostellar heating sufficient to halt fragmentation? A case study of the massive protocluster G8.68-0.37
If star formation proceeds by thermal fragmentation and the subsequent
gravitational collapse of the individual fragments, how is it possible to form
fragments massive enough for O and B stars in a typical star-forming molecular
cloud where the Jeans mass is about 1Msun at the typical densities (10^4 cm^-3)
and temperatures (10K)? We test the hypothesis that a first generation of
low-mass stars may heat the gas enough that subsequent thermal fragmentation
results in fragments >=10Msun, sufficient to form B stars. We combine ATCA and
SMA observations of the massive star-forming region G8.68-0.37 with radiative
transfer modeling to derive the present-day conditions in the region and use
this to infer the conditions in the past, at the time of core formation.
Assuming the current mass/separation of the observed cores equals the
fragmentation Jeans mass/length and the region's average density has not
changed, requires the gas temperature to have been 100K at the time of
fragmentation. The postulated first-generation of low-mass stars would still be
around today, but the number required to heat the cloud exceeds the limits
imposed by the observations. Several lines of evidence suggest the observed
cores in the region should eventually form O stars yet none have sufficient raw
material. Even if feedback may have suppressed fragmentation, it was not
sufficient to halt it to this extent. To develop into O stars, the cores must
obtain additional mass from outside their observationally defined boundaries.
The observations suggest they are currently fed via infall from the very
massive reservoir (~1500Msun) of gas in the larger pc scale cloud around the
star-forming cores. This suggests that massive stars do not form in the
collapse of individual massive fragments, but rather in smaller fragments that
themselves continue to gain mass by accretion from larger scales.Comment: 23 pages, 14 figures. Accepted for publication in Ap
A Triple Protostar System Formed via Fragmentation of a Gravitationally Unstable Disk
Binary and multiple star systems are a frequent outcome of the star formation
process, and as a result, almost half of all sun-like stars have at least one
companion star. Theoretical studies indicate that there are two main pathways
that can operate concurrently to form binary/multiple star systems: large scale
fragmentation of turbulent gas cores and filaments or smaller scale
fragmentation of a massive protostellar disk due to gravitational instability.
Observational evidence for turbulent fragmentation on scales of 1000~AU has
recently emerged. Previous evidence for disk fragmentation was limited to
inferences based on the separations of more-evolved pre-main sequence and
protostellar multiple systems. The triple protostar system L1448 IRS3B is an
ideal candidate to search for evidence of disk fragmentation. L1448 IRS3B is in
an early phase of the star formation process, likely less than 150,000 years in
age, and all protostars in the system are separated by 200~AU. Here we
report observations of dust and molecular gas emission that reveal a disk with
spiral structure surrounding the three protostars. Two protostars near the
center of the disk are separated by 61 AU, and a tertiary protostar is
coincident with a spiral arm in the outer disk at a 183 AU separation. The
inferred mass of the central pair of protostellar objects is 1 M,
while the disk surrounding the three protostars has a total mass of 0.30
M_{\sun}. The tertiary protostar itself has a minimum mass of 0.085
M. We demonstrate that the disk around L1448 IRS3B appears susceptible
to disk fragmentation at radii between 150~AU and 320~AU, overlapping with the
location of the tertiary protostar. This is consistent with models for a
protostellar disk that has recently undergone gravitational instability,
spawning one or two companion stars.Comment: Published in Nature on Oct. 27th. 24 pages, 8 figure
Atomic Resonance and Scattering
Contains research objectives and summary of research on eight research projects.National Science Foundation (Grant PHY75-15421-A01)U. S. Air Force - Office of Scientific Research (Grant AFOSR 76-2972)Joint Services Electronics Program (Contract DAAB07-76-C-1400)U. S. Air Force - Office of Scientific Research (Contract F44620-72-C-0057
Probing Episodic Accretion in Very Low Luminosity Objects
Episodic accretion has been proposed as a solution to the long-standing luminosity problem in star formation; however, the process remains poorly understood. We present observations of line emission from N2H+ and CO isotopologues using the Atacama Large Millimeter/submillimeter Array (ALMA) in the envelopes of eight very low luminosity objects (VeLLOs). In five of the sources the spatial distribution of emission from N2H+ and CO isotopologues shows a clear anticorrelation. It is proposed that this is tracing the CO snow line in the envelopes: N2H+ emission is depleted toward the center of these sources, in contrast to the CO isotopologue emission, which exhibits a peak. The positions of the CO snow lines traced by the N2H+ emission are located at much larger radii than those calculated using the current luminosities of the central sources. This implies that these five sources have experienced a recent accretion burst because the CO snow line would have been pushed outward during the burst because of the increased luminosity of the central star. The N2H+ and CO isotopologue emission from DCE161, one of the other three sources, is most likely tracing a transition disk at a later evolutionary stage. Excluding DCE161, five out of seven sources (i.e., ~70%) show signatures of a recent accretion burst. This fraction is larger than that of the Class 0/I sources studied by Jørgensen et al. and Frimann et al., suggesting that the interval between accretion episodes in VeLLOs is shorter than that in Class 0/I sources
- …
