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RESEARCH ARTICLE Open Access

An intuitionistic approach to scoring DNA
sequences against transcription factor binding site
motifs
Fernando Garcia-Alcalde1,2*, Armando Blanco2, Adrian J Shepherd3

Abstract

Background: Transcription factors (TFs) control transcription by binding to specific regions of DNA called
transcription factor binding sites (TFBSs). The identification of TFBSs is a crucial problem in computational biology
and includes the subtask of predicting the location of known TFBS motifs in a given DNA sequence. It has
previously been shown that, when scoring matches to known TFBS motifs, interdependencies between positions
within a motif should be taken into account. However, this remains a challenging task owing to the fact that
sequences similar to those of known TFBSs can occur by chance with a relatively high frequency. Here we present
a new method for matching sequences to TFBS motifs based on intuitionistic fuzzy sets (IFS) theory, an approach
that has been shown to be particularly appropriate for tackling problems that embody a high degree of
uncertainty.

Results: We propose SCintuit, a new scoring method for measuring sequence-motif affinity based on IFS theory.
Unlike existing methods that consider dependencies between positions, SCintuit is designed to prevent
overestimation of less conserved positions of TFBSs. For a given pair of bases, SCintuit is computed not only as a
function of their combined probability of occurrence, but also taking into account the individual importance of
each single base at its corresponding position. We used SCintuit to identify known TFBSs in DNA sequences. Our
method provides excellent results when dealing with both synthetic and real data, outperforming the sensitivity
and the specificity of two existing methods in all the experiments we performed.

Conclusions: The results show that SCintuit improves the prediction quality for TFs of the existing approaches
without compromising sensitivity. In addition, we show how SCintuit can be successfully applied to real research
problems. In this study the reliability of the IFS theory for motif discovery tasks is proven.

Background
Cells control the abundance of proteins by means of
diverse mechanisms. One such mechanism is the regula-
tion of transcription, which is a continuous process
whereby many factors combine to ensure appropriate
rates of protein synthesis. Understanding such complex
processes is one of the main objectives in computational
biology. In its early stages, transcription is controlled,
among other mechanisms, by the binding of proteins
called transcription factors (TFs) to specific regions of a
given chromosome called transcription factor binding

sites (TFBSs). These interactions between proteins and
DNA usually take place upstream from the gene, close
to the transcription start site (TSS), in the so-called pro-
moter region of the gene.
One of the biggest issues in identifying TFBSs is that a

single binding protein can bind to different DNA
sequences. Related DNA sequences to which the same
TF can bind are grouped together into a TFBS motif.
The identification of TFBSs within a given set of DNA
sequences is an active area of research. In this context
there exist two main approaches: i) the de novo discov-
ery of motifs, and ii) the detection of TFBSs using
motifs that are already known.
De novo methods aim to find significant sub-sequence

patterns within a set of TFBS sequences. Some of the
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most popular approaches are MEME [1], Gibbs sam-
pling [2], AlignACE [3], and more recently PRIORITY
and Trawler [4,5]. For a review see [6].
Detection methods, on the other hand, focus on infer-

ring new TFBSs from known binding motifs. Early
detection methods assumed independence between posi-
tions within a putative TFBS sequence, e.g. in Patser [7]
and ConSite [8]. However, it is now well established
that this assumption is wrong [9-11], and some methods
that consider position dependency for modeling and
finding TFBSs using advanced HMM and Bayesian mod-
els have appeared [12,13]. Likewise, two recent detection
methods have been developed that take into account
interdependencies between TFBS positions. Tomovic
and Oakeley proposed a method that incorporates a
measure of positional interdependence into the overall
score [14]. More recently, Zare-Mirakabad et al. devel-
oped a method based on joint information content and
mutual information [15]. In this method, positional
dependencies are taken into account by considering all
pairwise combinations of positions (see the Methods
section for more information).
The fact that TFBS sequences are usually very short

means that the same or very similar sequences tend to
occur by chance at a relatively high frequency. Conse-
quently one of the main goals in the prediction of
TFBSs is to reduce the false positive rate without com-
promising sensitivity. Methods that take into account
positional dependencies tend to be significantly more
effective at meeting this challenge. However, there
remains room for improvement. As we will show in the
Results section, existing methods have some drawbacks,
such as overlearning of the training data, arbitrary
threshold selection for testing dependencies, etc. The
purpose of the work presented here is to provide a new
method for measuring sequence-motif affinity that
improves on existing approaches.
Zadeh proposed fuzzy sets theory to mathematically

model the imprecision inherent in certains concepts
[16]. Briefly, fuzzy sets theory allows an object to par-
tially belong to a set with a membership degree between
0 and 1. Classical set theory is a special case of its fuzzy
counterpart in which membership and certainty degrees
are restricted to either 0 or 1. Atanassov proposed intui-
tionistic fuzzy sets (IFS) theory as an extension of the
fuzzy sets theory [17]. IFSs generalize the notion of a
fuzzy set representing uncertainty with respect to both
the degree of membership (μ) and non-membership (ν)
of a set by allowing that the sum μ + ν ≤ 1.
Owing to the fact that IFSs are capable of modelling

the uncertainty present in real-life situations, they have
been widely applied during the past decades to a variety
of problems (see the Methods section). In recent years,
it has been seen that the inherent uncertainty and noise

that characterize biological data cannot always be mod-
eled sufficiently well using probabilistic approaches and
that, as a consequence, alternative approaches to model-
ling this uncertainty may be required [18-21]. In addi-
tion to the usual problems of missing values and noisy
data associated with biological data, there exist some
additional hidden factors that affect binding affinities in
the context of sequence-motif scoring, e.g. cooperative
binding and chromatin structure [22]. Furthermore, the
described motifs are subject to change as new experi-
ments confirm new binding sites. In this work we make
use of IFS theory to formally model the uncertainty
associated with the problem of scoring DNA sequences
against TFBS motifs.

Results
Case studies
First, we wanted to show the ability of our proposed
method, SCintuit, to discriminate between the relative
importance of poorly-conserved positions and well-
conserved positions comparing it with the most repre-
sentative scoring methods: i) SCindep, a probabilistic
method that assumes positional independence; ii) SCdep,
a scoring method proposed by Tomovic and Oakeley
that take into account statistical interdependencies
between TFBS positions [14]; and iii) SCmat, a scoring
function proposed by Zare-Mirakabad et al. based on
the dependency between all pairwise combinations of
binding site positions [15].
In Figure 1(A) we show the binding sequences of the

motif Dof3 found in the JASPAR database. It can be
observed how the first position is highly conserved
while the fifth position is poorly conserved. We then
considered two sequences (Figure 1(B)): i) a sequence
with a mismatch in the conserved position; and ii) a
sequence with a mismatch in the poorly-conserved posi-
tion. As has been explained above, it would be desirable
that the score obtained for the case of the mismatch in
the conserved position is lower than the scoring for the
other sequence, as it shares the similarities in the most
conserved positions of the motif. In Table 1 we show
the results for the three methods. It can be observed
that our proposed scoring method discriminates
between the two cases, while the other three approaches
provide almost the same score for both sequences, miss-
ing the difference between the conservation level of the
positions being compared.
In the majority of cases, the sequences known to

belong to a given TFBS motif have very similar nucleo-
tide compositions and highly conserved positions. How-
ever, in the databases of known motifs there are a
number of examples where individual sequences differ
from the majority in highly-conserved positions. Such a
binding sequence can be considered an outlier with
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respect to the motif, i.e. a binding site that is not closely
related to the other binding sites in the motif. When
scoring new sequences against a given TFBS motif, we
should generally tolerate small, additional variations in
the sequence with respect to non-outliers, but be far
less tolerant of mutations to outlier sequences. Here we
evaluate the extent to which each scoring method is
able to discriminate between sequences belonging to
these two categories. Take, as a preliminary example,

the binding sequences for motif MZF1 in the JASPAR
database, as shown in Figure 2(A). It can be observed
how the highlighted outlier sequence GGAGGA does
not contain the higly-conserved base G at the third
position, while the highlighted sequence TGGGGA is
clearly a non-outlier (see motif logo in Figure 2(B)). We
selected the highlighted sequences and created two new
sequences by mutating its sixth position giving
GGAGGG (derived from an outlier) and TGGGGT
(derived from a non-outlier). In order to observe the
discrimination degrees of the different scoring methods,
we scored each sequence against the motif by means of
the different methods.
In reality, it would be desirable that the scoring for

the case of the mutated outlier sequence be lower than
the scoring for the mutated non-oulier sequence.
Results obtained by the SCmat, SCdep, and SCindep meth-
ods failed to capture the expected differences, giving the
incorrect impression that binding is likely to occur. On

Figure 1 Interdependencies between TFBS positions. Motif Dof3. A) Shows the binding sequences found in JASPAR. B) Shows the logo
representation of the motif (center), with the sequence having the mismatch in the conserved position (above), and the sequence having the
mismatch in the poorly-conserved position (below).

Table 1 Scoring results

Non-conserved Conserved Difference

SCintuit 0.788 0.687 0.101

SCdep 0.832 0.815 0.017

SCmat 0.672 0.685 -0.013

SCindep 0.839 0.827 0.012

Scoring results for the first case study. Unlike the other approaches, SCintuit
discriminates between the two sequences.
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the other hand, our proposed method obtained a more
realistic distance between the sequences, providing a
much lower score for the mutated outlier sequence
(Figure 2(C)).
These insights are confirmed in the following sections

where the experiments are extended to use large data-
sets, and the results are measured in terms of discovery
rates.

Prediction of TFBSs
Synthetic sequences
In order to compare the performance of the different
methods in predicting TFBSs, we used the non-
redundant publicly available JASPAR motifs database for
our experiments [23]. We selected all motifs for which
binding sequences are available (not only matrix pro-
files), resulting in a dataset of 124 motifs. For each of
these motifs, a random number between 2 and 6 bind-
ing sites were randomly selected and inserted in random
sequences of a random length between 200 bp and 500
bp from a third-order Markov model background distri-
bution obtained from the RSAT (Regulatory Sequence
Analysis Tools) [24]. For each position of each sequence
we computed the score for their corresponding motifs
with an assumed known TFBS length (the length of the
inserted motif).

Usually, methods have a high sensitivity (i.e. can
detect true positives), so that the key difference between
them is the number of false positives. Although our ulti-
mate aim is not to rely on essentially arbitrary thresh-
olds to assess performance, we began our analysis by
following the recommendations of Tomovic and Oake-
ley in [14], selecting thresholds of 0.7 and 0.8 indicating
a correct classification for a binding site. Table 2 shows
the precision (TP/(TP + FP )) of the different methods.
In the additional file 1: “Synthetic sequences experi-
ment” we show thresholded results for the different
methods. These indicate that our proposed scoring
function performed best, giving the smallest number of
false positives per TF whilst simultaneously giving a
high number of true positives.
In order not to rely on the selection of an arbitrary

threshold for evaluating the results, we computed a pre-
cision-recall (PR) curve for each considered method. PR
curves are commonly used in information retrieval for

Figure 2 Ratio of scoring values. Motif MZF1. A) Shows the binding sequences found in JASPAR. B) Shows the logo representation of the
motif (center), with the mutated sequences for the non-outlier binding sequence (above), and the outlier binding sequence (below). C) Shows
the ratio of the scoring results for each of the three methods when scoring the mutated sequence of the non-outlier binding sequence and the
outlier binding sequence respectively.

Table 2 Synthetic sequences precision.

Threshold SCintuit SCdep SCmat SCindep

0.7 0.63 0.17 0.09 0.02

0.8 0.82 0.27 0.14 0.05

SCintuit shows a much better precision than the rest of the methods.
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evaluating classification performance and give a more
informative picture of a method’s performance than
ROC (Receiver Operating Characteristic) curves [25]
when dealing with highly skewed datasets as is the case
here [26]. Figure 3 shows the PR graphs. SCintuit pro-
duces a better PR graph than the remaining methods
(see Table 3 for AUC values). In addition, ROC curves
can be found in the the additional file 2: “ROC curves”.
Mutated sequences
To further evaluate our proposed method, we obtained a
set of putative binding sites that are very similar to those
that are already known. This is a common scenario in
motif discovery, where the set of known sequences
belonging to a given binding motif is incomplete. In
order to simulate this situation, we proceeded in a similar
way to our previous experiment; all the steps were the
same except that we gave a single base mutation at a ran-
dom position within the selected binding site for each
motif. PR curves and AUC values were computed to
compare the performance of the different methods (Fig-
ure 4 and Table 3). ROC curves for this experiment can
be obtained from the additional file 2: “ROC curves”. The
ROC and precision-recall graphs shows how SCintuit gives

consistently superior values, with a higher AUC value
(Table 3). It can be observed that the improvement of the
performance of our method compared to SCindep, SCmat

and SCdep grew with respect to the synthetic sequences
experiment discussed in the previous section.
Real Data
We analyzed the performance of the proposed methods
when dealing with real experimental data. In order to do
so, we made use of the published ChIP-seq data on bind-
ing of TFs in embryonic stem cells from mouse by Chen
et al. in [27], as provided in the supplementary material
of [28]. We considered the three TFs (SMAD1, c-Myc,
and STAT3) that have binding sequences available in the
TRANSFAC database [29]. Thus, we obtained three sets
of 200 bp sequence segments centered at TF binding
locations, and we randomly selected 50 sequence seg-
ments from each set for our study (see additional file 3:
“FASTA sequences”). We scanned each set of sequences
using the 124 TFs from JASPAR for which binding
sequences are available. The results demonstrate the
superior performance of our new scoring method, as it
gives the smallest number of false positives per nucleo-
tide and per TF (Figure 5), and maintains an excellent
true-positive rate (Table 4). Detailed results can be found
in the additional file 4: “Motif statistics”. It can be seen
that our method presents consistently low false-positive
rates with all three sets of sequences, whereas the perfor-
mance of the other methods is much more variable.

Study of Single Nucleotide Polymorphisms in TNFR1 Gene
for the Response against Aspergillus Fumigatus
Hematological patients are typically treated by che-
motherapy and/or radiation. These treatments usually

Figure 3 Synthetic sequences results. PR curves for the three
scoring methods. SCintuit provides a more consistent classification
than the rest of the methods.

Table 3 AUC values for the synthetic and mutated
sequence experiments.

Synthetic Mutated

SCindep 0.550 0.526

SCdep 0.730 0.705

SCmat 0.787 0.725

SCintuit 0.910 0.886

SCintuit provides better results for both experiments.

Figure 4 Mutated sequences results. PR curves for the three
scoring methods. Again, SCintuit provides a better classification than
the rest of the methods.
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produce immunosuppression and severe neutropenia.
This clinical situation can be exploited by opportunistic
pathogens such as Aspergillus fumigatus to cause a deadly
infection called Invasive Pulmonary Aspergillosis (IPA)
[30,31]. The importance of finding ways to combat this

pathogen is evidenced by the fact that IPA occurs in
roughly 10% to 40% of hematological patients, with over-
all mortality rates ranging from 50% to 90% [32,33].
Tumor necrosis factor (TNF) activates T lymphocytes

in response to fungal infections through TNF receptors.

Figure 5 Real data results. Average false-positive ratio per TF for different thresholds for the proposed scoring methods.

Figure 6 Putative binding sequences for the G allele of the TNFR1-609(G/T). Best results were found for the highlighted SG-8 sequence. A
corresponding set was also obtained for the T allele.

Garcia-Alcalde et al. BMC Bioinformatics 2010, 11:551
http://www.biomedcentral.com/1471-2105/11/551

Page 6 of 13



One of the most important TNF receptors is TNFR1,
which plays a crucial role in immune regulation and host
immune responses. Experimental studies with TNFR1
knockout mice indicate that TNFR1 is indispensable in
host resistance against several infections [34]. Our
hypothesis is that single nucleotide polymorphisms
(SNPs) in the TNFR1 gene may influence the innate
immune response against Aspergillus fumigatus.
The gene encoding TNFR1 contain numerous poly-

morphisms [35,36]. By means of different experiments,
we concluded that TNFR1-609(G/T) polymorphism is criti-
cal in the development of the response against Aspergil-
lus because it might be regulating the cell-mediated Th1
immune response. Details on these experiments are out
of the scope of this work and can be consulted in [37]. In
this section, we use our proposed scoring method SCintuit

to investigate whether the TNFR1-609(G/T) promoter poly-
morphism is involved in the disruption of the recognition
of a potential binding site for a critical transcription fac-
tor that could influence TNFR1 transcription level.
TNFR1-609(G/T) Polymorphism Binding Affinity
For this experiment we used TFBS motifs found in
TRANSFAC database [29], which has been widely used
in research involving regulatory elements [38]. In order
to find interesting dependencies between the TNFR1-609
(G/T) SNP and TFs binding affinity we scored the human
TRANSFAC TFBSs against the TNFR1-609(G/T) poly-
morphism by means of the SCintuit method.
TFs bind to short parts of the TNFR1 promoter region

and, therefore, for each trial, we need to define a fragment
of the promoter sequence containing the TNFR1-609(G/T)

SNP that might be considered as the putative TFBS. To
this end, we need to determine the length of the sub-
sequences and the relative offset to the position of the
TNFR1-609(G/T) SNP. For each of the 446 human TFs in
TRANSFAC, we generated a set of putative binding
sequences by using a window size of a fixed length equal
to the number of position of the corresponding TF. Mov-
ing the window across the sequence in 5’-3’ direction gave
us the sub-sequences for the TNFR1-609(G/T) SNP that we
considered to be putative TFBSs (see Figure 6 for an
example). Next, we scored each pair of sub-sequences
(one sub-sequence for the G allele, and one for the T
allele) against the given TF applying the SCintuit method.
We were interested in those sub-sequences that fulfil

two properties: i) they have a high score in one allele

(G or T) so they can be considered as candidates to be
binding sites, and ii) the score is substantially lower
when considering the remaining allele so the SNP may
affect to the binding affinity. For our current research
we chose a conservative cut-off of 0.7, and retained
TFBSs with a score above this threshold for further ana-
lysis. The scores for the selected TFBSs with respect to
their corresponding alleles (sequences with a G(T)
instead of a T(G) at position -609) are shown in Table
5. Subsequently we will discuss these findings from a
biological perspective and show that the most interest-
ing insights arise in the context of the ICSBP TF, which
represents the highest scoring of all the human TRANS-
FAC motifs.
Functional Effect of ICSBP/IRF-8 in the TNFR1-609(C/T) SNP
In the previous section, we obtained predictive results
using our SCintuit scoring method and TRANSFAC data-
base (Table 5). From them, we selected four candidates
according to the two properties outlined in the previous
section, i.e E2A, HNF4, ICSBP, and Pax-2. We did not
find described relations between IPA response for any
of E2A, HNF4, and Pax-2 TFs. Logos for these TFs are
provided in Figure 7.
On the other hand, we found ICSBP (also known as

IRF-8) to be directly related with the purpose of our
study. ICSBP/IRF-8 shows a preference for binding the
T allele (see Table 5). As a member of IRF family of
transcription factors it is an important modulator of
IFNg signalling cascade and was identified in association
on the promoter region of numerous macrophage essen-
tial genes such as IL12, IL1b, IL18, iNOS or ISG15 [39].
In addition, several genes regulated by ICSBP/IRF-8,

such as MAP4K4, IL-17R, and SOCS7, are involved in
different stages of the nuclear factor �B (NF�B) signal-
ing pathway [39]. Therefore, we can hypothesize that
ICSBP/IRF-8 transcription factor might be also regulat-
ing the NF�B signaling pathway through the control of
the first gene of this signalling cascade, the TNFR1
gene. In support of this hypothesis, Zhao et al. estab-
lished that ICSBP/IRF-8 and TNFR1 are closely related
genes [40]. They found ICSBP/IRF-8 to be associated

Table 4 True positive rate for the real data experiment

TF SCintuit SCdep SCmat SCindep

SMAD1 0.96 0.94 0.90 0.86

c-Myc 0.92 0.94 0.92 0.84

STAT3 0.98 0.92 0.96 0.88

All the methods have a high true positive rate (threshold = 0.8).

Table 5 SCintuit scores for the two alleles.

TF Starting position Direction TNFR1-609(T) TNFR1-609(G)

AREB6 603 - 0.59 0,70

E2A 606 - 0.64 0.79

HNF4 605 + 0.52 0.78

ICSBP 606 + 0.81 0.69

MYB 601 - 0.76 0.77

Pax-2 604 - 0.76 0.58

SMAD 603 + 0.73 0.73

Human TRANSFAC motifs with a score greater than 0.7. ICSBP presents the
highest scoring among all the human TRANSFAC motifs, showing a preference
for binding the T allele.
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with an enhanced ubiquination of TNFR associated fac-
tor 6 (TRAF6), a protein that mediate the signal trans-
duction from members of the TNF receptor
superfamily, and the activation of AP-1 and NF�B tran-
scription factors.
On the other hand, several studies demonstrated that

ICSBP/IRF-8 promotes the differentiation and activation
of dendritic cells and macrophages cells [41,42], and
that, at the same time, TNFR1 mRNA level is increased
during this biological process [43].
Taken into account these observations, we hypothesize

that the presence of TNFR1-609(G/T) promoter poly-
morphisms can modify the binding affinity to ICSBP/
IRF-8 (see Figure 8) and, therefore, it could be used to
predict susceptibility to infection and to facilitate risk
stratification of hematological patients. However, the
question of whether the TNFR1 polymorphisms have
biological relevance regulating mRNA TNFR1 levels
through ICSBP/IRF-8 transcription factor remains unan-
swered. Functional analysis should be performed to
demonstrate the role of TNFR1-609(G/T) polymorphism
mediating the binding of ICSBP/IRF-8 to TNFR1
promoter.

Discussion
We have introduced a new IFS-based approach for scoring
DNA sequences against DNA motifs called SCintuit. In this
work we review three scoring schemes. These approaches
have several drawbacks. SCindep is based on an incorrect
assumption that the nucleotides of a given TFBS are

independent. In that context, SCdep extended the score in
order to account for positional dependencies. The problems
associated with unnormalized scores at each position have
been pointed out [15]. In addition, the results vary depend-
ing on the choice of the method and parameters for testing
the dependencies. The main drawback with SCmat is that it
has a tendency to overlearn the training data and conse-
quently its performance decreases when applied to real pro-
blems. There is therefore a need for a scoring method that
accounts for positional dependencies without compromis-
ing either the consistency or the accuracy of the results.
As explained above, SCintuit is based on the IFS theory,

which has been successfully applied to problems that
suffers from noisy and imprecise data. IFS theory repre-
sents uncertainty with respect to both the degree of
membership and non-membership. The uncertainty
associated with the tasks of scoring DNA sequences
against motifs makes intuitionistic concepts particularly
suitable for handling this kind of data. Taking advantage
of such properties, we define the membership and non-
membership degrees of a given pair bases at a given
position not only as a function of their combined prob-
ability of occurrence, but also taking into account the
importance of each individual base at its corresponding
position.
One of the biggest issues for this kind of scoring meth-

ods is giving high scores for the known binding sequences
of the motifs without overfitting. Our proposed approach
adequately solves the problem of computing the score of a
given sequence against a given motif by considering the
binding sequences that comprise the motif not only indivi-
dually but also as part of such set of sequences. Simple
experiments shows how other methods fail in capturing
realistic differences, while SCintuit provides good results

Figure 7 Discarded TFs. No described relations with IPA response
were found.

Figure 8 ICSBP against TNFR1-609(G/T) polymorphism. It can be
seen how the fourth position in the ICSBP motif (middle) matches
the T allele (bottom) and mismatches the G allele (top).
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(Figure 1, 2). Our method assigned high scores for known
binding sites, disfavouring mutations in the conserved
positions of the binding site.
These insights are confirmed from experiments for pre-

dicting TFBSs in large datasets. We compared the perfor-
mance of the proposed scoring methods on recognizing
motifs in sets of random sequences from a third-order
Markov model background distribution in two circum-
stances: i) when inserting known binding sequences, and
ii) when inserting mutated binding sequences. In both
situations we found that our proposed method gave the
smallest number of false positives per TF whilst simulta-
neously giving a high number of true positives (Figures 3,
4). More importantly, our method outperforms the other
approaches when dealing with real experimental data
derived from Chip-seq assays. In this case, again, the
number of false positive is significantly reduced (Figure
5). Finally, we validated our method studying the effect of
known SNPs of TNFR1 gene in the binding affinity of
TRANSFAC TFs for the response against Aspergillus
fumigatus. We found the highest scoring for ICSBP TF
among all the human TRANSFAC motifs. Although
functional analysis should be performed, according to
several previous studies, we hypothesize that the presence
of TNFR1-609(G/T) polymorphisms could be used to pre-
dict susceptibility to infection of hematological patients.
In general, the obtained results on the different

experiments demonstrated that the proposed intuitionis-
tic approach provide a better and more accurate model
for the detection of motifs and for the relationships
between positions of the TFBSs.

Conclusions
In the present study, we have introduced SCintuit, a new
scoring method for measuring sequence-motif affinity,
based on IFS theory. Our main objective was to improve
the prediction quality for TFs of the existing approaches,
reducing the false positive rate without compromising
sensitivity. We show that SCintuit outperforms other
approaches in motif recognition tasks, and prove how it
can be successfully applied to real research problems.
We have used our approach as a scanning method for
the prediction of TFBSs, but it also can be incorporated
with methods for de novo discovery of motifs. As intui-
tionistic theory is specially suitable for problems that
deal with imprecise concepts, we are currently working
on a fuzzy approach that applies the proposed scoring
in an ab initio method to find motifs in large sets of
related DNA sequences.

Methods
Alternative approaches
In recent years, several scoring methods for the predic-
tion of TFBSs have been proposed. In this section we

give a brief overview of those methods that take account
of positional dependencies, as they have been shown to
outperform methods that assume independence. Let us
first introduce the notation. Let B = {A, C, G, T} be the
set of the four DNA nucleotides. Let D be a set of
ordered DNA sequences on B of length n. Let us sup-
pose that we have a motif M = S1,..., St, where Si is a
DNA sequence on D consisting of t aligned binding
sites of length n. The problem is then reduced to assign-
ing a score to the pair formed by a given putative TFBS,
S Î D, and a given motif, M.
In what follows we will follow the notation proposed by

Wasserman and Sandelin in [44], where F (b, i), for b Î
B and 1 ≤ i ≤ n shows the occurrences of nucleotide b in
position i, and P b i

F b i
t

a b( , )
( , )

( )= + , for bÎ B and 1 ≤
i ≤ n is the corrected probability of base b at position i,
where a(b) is a smoothing parameter (a(b) = 0.001). a(b)
= 0.01 is usually reported but our experiments show that
smaller values provide more accurate results.
Statistical dependencies
Tomovic and Oakeley extended the previous method that
assumed positional independence [14]. The authors also fol-
lowed the notation of [44] and defined Wb, i as a position
weighted matrix (PWM) of base b in position i computed as:

W log
P b i

P bb i,
( , )
( )

,= 2 (1)

where P(b) is the background probability of base b. In
the case where independence is assumed, the score for a
given DNA sequence S can be computed by summing
all the values of Wb, i for every base in S:

SC s Windep s i

i

n

i
( ) .,=

=
∑

1

(2)

The first step for extending this score involves testing
the dependencies between each pair of positions i and j.
The authors introduced three different methods: i) c2

test; ii) G statistics; and iii) Bayesian hypothesis testing.
The authors used these three methods to calculate the
dependencies between pairs of positions in the motifs
available in the public database JASPAR [23]. The reader
should note that the accurate computation of positional
dependencies is still an open problem since different
results are obtained depending on the method and para-
meters used in their computation (see Supplementary
Material 2-4 in [14]). Further details about obtaining the
position dependencies and multiple test corrections can
be found in [14].
In order to compute the new score, the corrected

probability for the bases b1b2 ... bm in the dependent
positions i1i2 ... im is defined by:

Garcia-Alcalde et al. BMC Bioinformatics 2010, 11:551
http://www.biomedcentral.com/1471-2105/11/551

Page 9 of 13



P b b i i
F b b i i

t
a b b

m m
m m

m

( , , , , , )
( , , , , , )

( , , ),

1 1
1 1

1

   



= +

+
(3)

where a(b1,..., bm) = a(b1) ... a(bm) is a smoothing
parameter.
It is straightforward then to obtain values that corre-

spond to the PWM values:

W
P b b i i

P b P bb b i i
m m

m
m m1 1 2

1 1

1
, , , , , log

( , , , , )
( ) ( )

,
. 

 


=
⎛

⎝
⎜

⎞

⎠
⎟ (4)

Finally, their proposed scoring function, which incor-
porates positional dependencies, can be computed as:

SC S W W

W

dep S i

i

k

S S j j

i

k

S S

i ji i

ji

ji i

j

( ) , , , ,

, ,

= + + +

+

= =

…

∑ ∑ + +

1 1

1

1 1

2



ii m i m

m

ij j

i

k

+ − + −…
=
∑ 1 1

1

, , , ,

(5)

where, k1 is the number of independent positions, k2 is
the number of dependent positions of order 2 (nucleo-
tides at positions ji and ji+1) and km the number of
dependent positions of order m (nucleotides at positions
ji, ji+1,..., ji+m-1).
For both the SCindep and SCdep it is advisable to per-

form the following normalization:

N
SC SC

SC SCSC = −
−

min( )
max( ) min( )

(6)

Matrix based
Zare-Mirakabad et al. proposed a new scoring function
based on the dependency between all pairwise combina-
tions of binding site positions [15]. Their method is
based on the mutual information matrix, defined as: (see
equation (7))

M P b b i j
P b b i j

P b i P b jij i j
i j

i jb bi

=
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟( , , , ) log

( , , , )

( , ) ( , )
,

2

jj

∑ , (7)

and on the joint information content (JIC), defined as:

JIC P b b i j
P b b i j

P b P b
b Bb Bj

=
⎛

⎝
⎜

⎞

⎠
⎟

∈∈

∑∑ ( , , , ) log
( , , , )
( ) ( )1 2

1 2

1 2
21

== +=

−

∑∑
i

n

i

n

11

1

. (8)

In order to compute their score, the authors defined
a PWM, WPW , containing 16 rows and (n · (n - 1)/2)
columns for all the pairwise combinations of the posi-
tions:

W
P b b i j

P b P b

P b b i
b b i j
PW
1 2

1 2

1 2

1 2
, , , log

( , , , )
( ) ( )

log
( , , ,=

⎛

⎝
⎜

⎞

⎠
⎟ + jj

P b i P b j

)
( , ) ( , )

,
1 2

⎛

⎝
⎜

⎞

⎠
⎟ (9)

where b1, b2 Î 2 B and 1 ≤ i, j ≤ n and i ≠ j. For more
on this method see [15].
Finally, for a given DNA sequence S Î D of length n

the score SCmat is computed as:

SC Wmat S S i j
PW

j i

n

i

n

i j
=

= +=

−

∑∑ , , , .
11

1

(10)

In order to obtain a normalized value for the score,
equation (6) should be applied.

Intuitionistic fuzzy sets
Intuitionistic fuzzy sets (IFS) theory was proposed by Ata-
nassov [17]. It has been applied in such diverse fields as
decision making [45], logic programming [46] medical
diagnosis [47,48], pattern recognition [49], etc. IFS theory
is an extension of the fuzzy sets theory previously pro-
posed by Zadeh [16] that allows the degrees of member-
ship and non-membership to be independently uncertain,
which makes the representation more flexible at capturing
the current state of our understanding given inconclusive
data [50,51]. Next, we introduce some basic IFS concepts.
Let X be the universe of discourse. An intuitionistic

fuzzy set A in X is an object having the form:

A x x x x XA A= ∈{( , ( ), ( )) : },  (11)

where μA, νA : X ® 0[1] denote membership function
and non-membership function of A, satisfying 0 ≤ μA +
νA ≤ 1 for every x Î X. Therefore, the degree of uncer-
tainty of x to A is πA(x) = 1 - μA - νA. For more on this
topic please refer to [17,50,51].

Intuitionistic representation of motifs
For our approach, a given motif M is represented as the
set of IFSs of all the pairwise combinations of its posi-
tions: I IM

i j
M= { }, , where 1 ≤ i, j ≤ n and i ≠ j. Each of

the i, j combinations for the motif positions is then an
IFS of 16 elements defined as:

I b b v b b B Bi j
M

I Ii j i j
M M, { , ( ), ( ) : },
, ,

= ∈ × (12)

where B × B is the universe of discourse, i.e. the set of
all 16 possible combinations of bases for two given posi-
tions i and j (AA, AC,..., TT).
Membership degree computation


I l j

M
,

represents the degree of membership of the pairs

for the basis b1, b2 Î B in a given pair of positions i, j in
a motif M. It can be automatically computed as:
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I i j

M b b P b b i j P b b i j
P b i P b j

,
( , ) ( , , , ) ( ( , , , ))

( , ) ( , )
1 2 1 2 1 2

1 21= + − +
22

, (13)

where the above notation holds. As can be seen, the
membership degree is a function of the probability of
the pair of bases being compared and their individual

conservation. Obviously, 0 11 2≤ ≤
I i j

M b b
,
( , ) and the

degree increases as do the corrected probabilities of
bases b1 and b2 in positions i and j, as well as the indivi-
dual corrected probabilities P (b1, i) and P (b2, j).
Non-membership degree computation


I i j

M
,
represents the non-membership degree of the pairs

for the basis b1, b2 Î B in a given pair of positions i and
j in a motif M. It can be automatically computed as:

 
I

i
b

j
b

Ii j i j
M Mb b

IC IC
b b

, ,
( , ) ( ( , )),1 2 1 2

1 2

2
1=

+⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

− (14)

where IC
P b p P b p

p
b = +2

2
2( , ) log ( ( , )) is the normalized

information content of base b in position p and


I i j

M b b
,
( , )1 2 is in the range 0 11 2≤ ≤

I i j
M b b
,
( , ) . The

reader should note that we make use of the IC of the two
positions i, j to assign the allowed degree of uncertainty
for such pair of positions. When the IC is high, the degree
of uncertainty will be low and viceversa. Likewise, as the
information content of the two basis increases, the sum of

the membership degrees,  
I Ii j i j

M Mb b b b
, ,
( , ) ( , )1 2 1 2+ , gets

closer to 1. Therefore, the non-membership degree in
positions i, j is a function of the corresponding member-
ship degree and the uncertainty level computed for b1 and

b2. It is easy to prove that  
I Ii j i j

M Mb b b b
, ,
( , ) ( , )1 2 1 2 1+ ≤

Scoring
In order to define our proposed score, we first introduce
the simplest case of scoring a length-2 DNA subsequence
D = b1, b2 in the positions i and j of a motif M:

SC b b b b b bintuit
i j

I I Ii j i j i j
M M M

, ( , ) ( , )(max( ) ( , )
, , ,

1 2 1 2 1 2= −   )), (15)

where max( )
,


I i j

M is the maximum degree of non-

membership in M found in the pair of positions i and
j considering all the possible combination of basis b1,

b2 Î B2, and 
I i j

M b b
,
( , )1 2 and 

I i j
M b b
,
( , )1 2 are the

membership degree and non-membership degree of
the pairs for the basis (b1, b2) Î B in the pair of posi-
tions i, j of M, computed as stated in sections and
respectively.

As with the previously defined scores, a normalization
step needs to be performed in order to obtain compar-
able results. The source code can obtained from http://
genome.ugr.es/intuit.

NSC b b
SC b b SC

intuit
i j intuit

i j
intuit
i j

,
, ,

( , )
( , ) min( )

max
1 2

1 2= −
(( ) min( )

,, ,SC SCintuit
i j

intuit
i j−

(16)

where are the min( ),SCintuit
i j and max( ),SCintuit

i j are the

min/max possible scores in the positions (i, j) of the motif.
Finally, for a given DNA sequence S Î D of length n

the score SCintuit is computed as:

SC NSC S Sintuit

j i

n

i

n

intuit
i j

i j=
= +=

−

∑∑
11

1
, ( , ). (17)

Additional material

Additional file 1: Synthetic sequences experiment. This files contains
thresholded results for the different methods for the synthetic sequences
experiment.

Additional file 2: ROC curves. This file contains the ROC curves
associated to the synthetic and mutated sequences experiments.

Additional file 3: FASTA sequences. This file contains the 50 sequence
segments in FASTA format for each one of the motifs SMAD1, Myc, and
STAT3.

Additional file 4: Motif statistics. This file contains some statistics for
the experiment discussed in the section Real data.
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