386 research outputs found

    Distinct neuroinflammatory signatures exist across genetic and sporadic ALS cohorts

    Get PDF
    Acknowledgments This research was funded in part by the Wellcome Trust (108890/Z/15/Z) to OMR, a Pathological Society and Jean Shanks Foundation grant (JSPS CLSG 202002) to JMG and JOS, an NIH grant (5-R01-NS127186-02) to JMG, FMW, and JOS, a Motor Neuron Disease (MND) Scotland grant to JMG and CRS (2021/MNDS/RP/8440GREG), and a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (215454/Z/19/Z) to CRS. For the purpose of open access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission. This work would not be possible without the resources of the Edinburgh Brain Bank. The authors declare no conflicts of interest.Preprin

    Distinct neuroinflammatory signatures exist across genetic and sporadic amyotrophic lateral sclerosis cohorts

    Get PDF
    Acknowledgements This work would not be possible without the resources of the Edinburgh Brain Bank, and the tissue donors and their families. Funding This research was funded in part by the Wellcome Trust (108890/Z/15/Z) to O.M.R., a Pathological Society of Great Britain & Ireland and Jean Shanks Foundation grant (JSPS CLSG 202002) to J.M.G. and J.O., a National Institutes of Health (NIH) grant (5-R01-NS127186-02) to J.M.G., F.M.W., and J.O., a Motor Neuron Disease (MND) Scotland grant to J.M.G. and C.R.S. (2021/MNDS/RP/8440GREG), and a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (215454/Z/19/Z) to C.R.S.Peer reviewedPublisher PD

    Reduced LIMK2 expression in colorectal cancer reflects its role in limiting stem cell proliferation

    Get PDF
    Objective: Colorectal cancer (CRC) is a major contributor to cancer mortality and morbidity. LIM kinase 2 (LIMK2) promotes tumour cell invasion and metastasis. The objectives of this study were to determine how LIMK2 expression is associated with CRC progression and patient outcome, and to use genetically modified Drosophila and mice to determine how LIMK2 deletion affects gastrointestinal stem cell regulation and tumour development.<p></p> Design: LIMK2 expression and activity were measured by immunostaining tumours from CRC-prone mice, human CRC cell lines and 650 human tumours. LIMK knockdown in Drosophila or Limk2 deletion in mice allowed for assessment of their contributions to gastrointestinal stem cell homeostasis and tumour development.<p></p> Results: LIMK2 expression was reduced in intestinal tumours of cancer-prone mice, as well as in human CRC cell lines and tumours. Reduced LIMK2 expression and substrate phosphorylation were associated with shorter patient survival. Genetic analysis in Drosophila midgut and intestinal epithelial cells isolated from genetically modified mice revealed a conserved role for LIMK2 in constraining gastrointestinal stem cell proliferation. Limk2 deletion increased colon tumour size in a colitis-associated colorectal mouse cancer model.<p></p> Conclusions: This study revealed that LIMK2 expression and activity progressively decrease with advancing stage, and supports the hypothesis that there is selective pressure for reduced LIMK2 expression in CRC to relieve negative constraints imposed upon gastrointestinal stem cells.<p></p&gt

    Lactate signalling regulates fungal β-glucan masking and immune evasion

    Get PDF
    AJPB: This work was supported by the European Research Council (STRIFE, ERC- 2009-AdG-249793), The UK Medical Research Council (MR/M026663/1), the UK Biotechnology and Biological Research Council (BB/K017365/1), the Wellcome Trust (080088; 097377). ERB: This work was supported by the UK Biotechnology and Biological Research Council (BB/M014525/1). GMA: Supported by the CNPq-Brazil (Science without Borders fellowship 202976/2014-9). GDB: Wellcome Trust (102705). CAM: This work was supported by the UK Medical Research Council (G0400284). DMM: This work was supported by UK National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC/K000306/1). NARG/JW: Wellcome Trust (086827, 075470,101873) and Wellcome Trust Strategic Award in Medical Mycology and Fungal Immunology (097377). ALL: This work was supported by the MRC Centre for Medical Mycology and the University of Aberdeen (MR/N006364/1).Peer reviewedPostprin

    Cost-effectiveness of a national exercise referral programme for primary care patients in Wales: results of a randomised controlled trial

    Get PDF
    This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.The research was independent and funded by the Welsh Assembly Government. RTE is supported by Public Health Wales. Additional support for LM and SM during write up was provided by The Centre for the Development and Evaluation of Complex Interventions for Public Health Improvement (DECIPHer), a UKCRC Public Health Research: Centre of Excellence. Funding from the British Heart Foundation, Cancer Research UK, Economic and Social Research Council (RES-590-28-0005), Medical Research Council, the Welsh Assembly Government and the Wellcome Trust (WT087640MA), under the auspices of the UK Clinical Research Collaboration, is gratefully acknowledged

    Nanoclusters of the resting T cell antigen receptor (TCR) localize to non-raft domains

    Get PDF
    © 2014 Elsevier B.V. In the last decade an increasing number of plasma membrane (PM) proteins have been shown to be non-randomly distributed but instead forming submicron-sized oligomers called nanoclusters. Nanoclusters exist independently of the ligand-bound state of the receptors and their existence implies a high degree of lateral organisation of the PM and its proteins. The mechanisms that drive receptor nanoclustering are largely unknown. One well-defined example of a transmembrane receptor that forms nanoclusters is the T cell antigen receptor (TCR), a multisubunit protein complex whose nanoclustering influences its activity. Membrane lipids, namely cholesterol and sphingomyelin, have been shown to contribute to TCR nanoclustering. However, the identity of the membrane microdomain in which the TCR resides remains controversial. Using a GFP-labeled TCR we show here that the resting TCR localized in the disordered domain of giant PM vesicles (GPMVs) and PM spheres (PMSs) and that single and nanoclustered TCRs are found in the high-density fractions in sucrose gradients. Both findings are indicative of non-raft localization. We discuss possible mechanisms of TCR nanoclustering in T cells. This article is part of a Special Issue entitled: Nanoscale membrane organisation and signalling.German Research Foundation (GSC-4, the Spemann Graduate School and EXC294, the BIOSS Center for Biological Signalling Studies, by the German Research Foundation grant SCH 976/2-1, and by the European Union through grant FP7/2007-2013 SYBILLAPeer Reviewe

    Chemogenomics identifies acetyl-coenzyme A synthetase as a target for malaria treatment and prevention

    Get PDF
    We identify the Plasmodium falciparum acetyl-coenzyme A synthetase (PfAcAS) as a druggable target, using genetic and chemical validation. In vitro evolution of resistance with two antiplasmodial drug-like compounds (MMV019721 and MMV084978) selects for mutations in PfAcAS. Metabolic profiling of compound-treated parasites reveals changes in acetyl-CoA levels for both compounds. Genome editing confirms that mutations in PfAcAS are sufficient to confer resistance. Knockdown studies demonstrate that PfAcAS is essential for asexual growth, and partial knockdown induces hypersensitivity to both compounds. In vitro biochemical assays using recombinantly expressed PfAcAS validates that MMV019721 and MMV084978 directly inhibit the enzyme by preventing CoA and acetate binding, respectively. Immunolocalization studies reveal that PfAcAS is primarily localized to the nucleus. Functional studies demonstrate inhibition of histone acetylation in compound-treated wild-type, but not in resistant parasites. Our findings identify and validate PfAcAS as an essential, druggable target involved in the epigenetic regulation of gene expression

    Recent Applications of Fluorescence Recovery after Photobleaching (FRAP) to Membrane Bio-Macromolecules

    Get PDF
    This review examines some recent applications of fluorescence recovery after photobleaching (FRAP) to biopolymers, while mainly focusing on membrane protein studies. Initially, we discuss the lateral diffusion of membrane proteins, as measured by FRAP. Then, we talk about the use of FRAP to probe interactions between membrane proteins by obtaining fundamental information such as geometry and stoichiometry of the interacting complex. Afterwards, we discuss some applications of FRAP at the cellular level as well as the level of organisms. We conclude by comparing diffusion coefficients obtained by FRAP and several other alternative methods
    corecore