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In the last decade an increasing number of plasma membrane (PM) proteins have been shown to be non-
randomly distributed but instead forming submicron-sized oligomers called nanoclusters. Nanoclusters exist in-
dependently of the ligand-bound state of the receptors and their existence implies a high degree of lateral orga-
nisation of the PM and its proteins. Themechanisms that drive receptor nanoclustering are largely unknown. One
well-defined example of a transmembrane receptor that forms nanoclusters is the T cell antigen receptor (TCR), a
multisubunit protein complexwhose nanoclustering influences its activity. Membrane lipids, namely cholesterol
and sphingomyelin, have been shown to contribute to TCR nanoclustering. However, the identity of the mem-
brane microdomain in which the TCR resides remains controversial. Using a GFP-labeled TCR we show here
that the resting TCR localized in the disordered domain of giant PM vesicles (GPMVs) and PM spheres (PMSs)
and that single and nanoclustered TCRs are found in the high-density fractions in sucrose gradients. Bothfindings
are indicative of non-raft localization. We discuss possible mechanisms of TCR nanoclustering in T cells. This ar-
ticle is part of a Special Issue entitled: Nanoscale membrane organisation and signalling.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

T cells are a crucial component of the adaptive immune system. They
are activated when the T cell antigen receptor (TCR) recognizes foreign
antigens, i.e. foreign peptides presented on MHC molecules (peptide-
MHC). The TCR consists of six transmembrane (TM) proteins that as-
semble in dimers: the antigen-binding TCRαβ dimer and the signal-
transducing CD3γε, CD3δε and ζζ dimers to form a single complex [1,
2]. However, the stoichiometry of the minimal TCR complex is still not
resolved [3]. Multivalent binding of peptide-MHC or anti-TCR antibod-
ies to TCRαβ results in a change in the conformation of the CD3 and ζ
subunits, called CD3 conformational change (CD3CC) [4,5]. The CD3CC
leads to an opening of the proline-rich region in the cytoplasmic tail of
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CD3ε, enabling the adaptor protein Nck to bind to this region using its
first SH3 domain [4]. Induction of the CD3CC is required for the phos-
phorylation of the CD3 and ζ subunits, and thus for the activation of
the T cell [6–8]. Other models of antigen-induced TCR phosphorylation
have also been proposed [9]. In this article, we will focus on the pre-
assembly of TCRs on the cell surface that occurs independently and
prior to antigen-binding. In order to distinguish these pre-clusters
from antigen- and signaling-induced microclusters [10,11], they were
called TCR nanoclusters [3,12].

1.1. The TCR forms nanoclusters

On the PM of T cells, single TCR complexes [13] and nanoclustered
TCRs (multimers of the single TCRs) coexist independently of TCR acti-
vation (Fig. 1A). Awide variety of techniques have been used to demon-
strate the organization of the TCR in nanoclusters: Blue Native PAGE
(BN-PAGE), immuno-gold electron microscopy (EM) staining of the
cell surface TCR on fixed cells [14], immuno-gold EM staining of the
TCR cytoplasmic tails, high speed photoactivated localization micro-
scopy (PALM) [15], in single and double-colour [16], staining with
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Fig. 1. The TCR co-exists as single and nanoclustered complexes. (A) Single TCRs of a possibleαβγεδεζζ or γεαβζζαβδε stoichiometry can form nanoclusters which contain up to 20 TCRs.
The arrows indicate thedynamics of these associations. (B) The single TCRs possess low avidity towardsmultimeric peptide-MHCand only those TCRs are activated that bind to the antigen
(left). The TCR nanoclusters possess high avidity towards multimeric antigens and all TCRs within a cluster are activated even when only two TCRs are antigen-bound. This renders the
nanoclusters highly responsive even to low concentrations of antigen.
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quantum dots [17] and by dual-color fluorescence cross-
correlation spectroscopy (FCS) [15]. An in-depth discussion of
this data can be found in recent reviews [3,18] and in the accom-
panying reviews in this issue. Interestingly, different techniques
show that the TCR oligomerizes to reach a maximum size of ~20
TCRs per nanocluster [14–16]. To date the dynamics of the TCRs
in nanoclusters is not known. Thus, it could be that individual
TCRs rapidly exchange between the nanoclustered pool and the
“single TCR” pool (Fig. 1A).

The degree of TCR nanoclustering differs among different T cell
lines and T cell populations. This was first noted when the sizes of
a murine Vα17Vβ16 TCR were studied using BN-PAGE [19]. The
original T cell clone contained mostly single TCRs; a hybridoma of
this clone using the fusion line BW5147α−β− contained a substan-
tial proportion of nanoclustered TCRs; and a transfectant in which
the Vα17 and Vβ16 chains were expressed in the TCRαβ- cells
54ζ17 contained mostly TCR nanoclusters. Later we found that
naïve T cells express mostly small-sized TCR oligomers and that
the nanoclustering is strongly enhanced in antigen-experienced T
cells [12]. Thus, T cell blasts and memory T cells express highly
nanoclustered TCRs.

Interestingly, the disparity in TCR nanoclustering among different
T cells can help to explain its functional consequences. It was shown
that the large TCR nanoclusters are preferentially tyrosine phosphor-
ylated in response to low concentrations of antigen [14] (Fig. 1B).
This preferential phosphorylation could be due to a higher avidity
of large TCR nanoclusters towards a multimeric peptide-MHC [20]
and/or to the existence of cooperativity phenomena within
nanoclusters [6]. In this regard, we proposed that dimeric pMHC-
binding to as few as two TCRs in a nanocluster caused all TCRs within
the nanoclusters to undergo the CD3CC and adopt the active confor-
mation, independent of their binding to a cognate pMHC [6,12]
(Fig. 1B). Implications of these findings were extensively discussed
before [3,18] and could be behind the higher sensitivity of effector
and memory T cells (high degree of nanoclustering) compared to
naïve T cells (low degree of nanoclustering) [21–23].
1.2. Membrane lipids are involved in forming TCR nanoclusters

Since T cells can regulate the degree of TCR nanoclustering and
thereby the sensitivity of the T cells towards antigenic stimulation [3,
12], it is crucial to understand the molecular mechanism(s) that regu-
late TCR nanoclustering.

Initially, we noticed that detergents that sequester cholesterol, such
as digitonin, disassembled the TCR nanoclusters to single TCRs as de-
tected by BN-PAGE [14,24,25]. In contrast, detergents that do not extract
cholesterol, such as Brij96, kept the TCR nanoclusters intact. This moti-
vated us to modulate cholesterol levels in intact cells by using methyl-
β-cyclodextrin (MβCD), which extracts cholesterol from membranes.
In fact, most TCR nanoclusters were disrupted by MβCD treatment as
seen by BN-PAGE and immuno-gold EM [14,20]. The effect of MβCD
could be reverted by adding cholesterol, clearly indicating that choles-
terol is required for TCR nanoclustering [20]. The cholesterol-based
TCR nanoclustering is of functional relevance, since MβCD- and
cholesterol-treatments modulate the avidity of the TCR for pMHC tetra-
mers [20,26,27].

In 1997 itwas proposed that themembrane can be divided into lipid
rafts and non-rafts [28]. Rafts are enriched in cholesterol and
glycosphingolipids whereas non-rafts mostly contain unsaturated
phospholipids. The data to support the “raft hypothesis” came from de-
tergent extractions of cells with detergent and then testing whether a
protein or lipid is present in the detergent-resistant membrane
(DRM) fraction, initially synonymous with rafts, or not. However,
DRMs should not automatically be equated with rafts in intact mem-
branes. For a deeper discussion on this issue we would like to refer to
a recent review [29].

In order to understand how cholesterol contributes to TCR
nanoclustering, it is crucial to determine in which PM microdomains
the single and the nanoclustered TCRs are located. The localization of
the resting TCR in PM microdomains is controversially discussed in
the literature. On the one hand, it was suggested that the resting TCR
is localized in non-raft membranes, since it was not present in
detergent-resistant membrane (DRM) fractions [30,31]. Likewise it
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was concluded that the resting TCR is present in non-rafts in plasma
membrane fragments of T cells [32], on the PM surface [33], or in
giant unilamellar vesicles (GUVs) [20]. On the other hand, using a differ-
ent DRM extraction protocol as before, it was found that the resting TCR
is localized in a subset of the DRM fractions [34]. Furthermore, the TCR
colocalized with the ganglioside raft-marker GM1 on the resting T cell
after GM1 clustering [35,36] and the authors suggest that this is indica-
tive of raft localization in the resting state. Thus, the aim of this study
was to clarify whether the TCR is in the non-raft or the raft subdomain
of the native PM. To this endwe used here two physiological model sys-
tems, the giant plasma membrane vesicle (GPMV) and the plasma
membrane sphere (PMS), to study the localization of the resting TCR.

1.3. Giant PM vesicles (GPMVs) and PM spheres (PMSs)

Lipid model systems like GUVs, GPMVs and PMSs segregate into a
liquid-disordered (ld, corresponding to the non-raft domain) and a
liquid-ordered (lo, corresponding to the raft domain) phase enriched
in unsaturated and saturated fatty acids, respectively [37,38]. We previ-
ously reported that the TCR localized in the ld domain of GUVs [20].
However, the biological significance of GUV experiments is limited
due to the compositional simplicity of the lipid mixture and the exclu-
sion of TM proteins from the lo phase [39–41]. By contrast, GPMVs and
PMSs contain a physiological sampling of lipids [42,43] and some TM
proteins in the ordered phase [43–46], thus comprising a powerful
and up-to-date best model system to study TM protein partitioning be-
tween coexisting liquid phases in a biological membrane.

2. Materials and methods

2.1. Reagents

The following antibodies were used: anti-CD3ε (M20ε, Santa Cruz
Biotechnology), anti-ζ antiserum 448 [47], anti-mouse TCRβ (H57-
597, Abcam) and secondary antibodies for Western blot (WB).

2.2. Vectors and cells

PMiDsRed2_mζ was generated by amplifying mouse ζ (mζ) by PCR
from pcDNA3_mζ-SBP [20] and cloned at the XhoI/MfeI site in
pMiDsRed2 (provided by S. Herzog). In parallel, GFP was amplified
Fig. 2. The TCR-GFP-SBP forms nanoclusters. (A) Schematic representation of the TCR-GFP-SBP.
anti-TCRβ (H57-597) and analyzed by flow cytometry. Histograms of the GFP and the APC fluo
TCR-GFP-SBP was purified by a streptavidin PD and after washing eluted with 4 mM biotin. Pro
by reducing SDS-PAGE. Purifed GFP was also analyzed (lane 1). WBwas performed using anti-G
were lysedwith either 0.5% Brij96V or 1% digitonin. Cell lysateswere dialyzed against BN lysis buf
(C) and separated by BN-PAGE (lanes 3–5). WB was performed using anti-ζ antibodies. The ma
from pMiG and fused to SBP by PCR. The GFP-SBP PCR product was
cloned into the MfeI/BamHI site of pMiDsRed2_mζ yielding the final
plasmid pMiDsRed2_mζ-GFP-SBP. This plasmid was transfected into
the mouse 2B4-derived ζ-deficient line MA5.8 to yield the mouse T
cell line M.mζ-GFP-SBP which was then used for the experiments in
Fig. 2. The M.mζ-SBP/mζ-GFP cell line had been described previously
[20] andwas used for the experiments in Fig. 3. The GFP-GPI expressing
RBL-2H3 cells were also described [45]. Furthermore, the human T cell
line Jurkat was used. All cells were cultured in complete RPMI-1640
media supplemented with 5% fetal calf serum.

2.3. Cell lysis and WB

Five to thirty million cells were lysed in 1 ml lysis buffer containing
20 mM TrisHCl (pH 8), 137 mM NaCl, 2 mM EDTA, 10% glycerol, 1×
protease inhibitor cocktail (Sigma #P2714), 1 mM PMSF, 5 mM
iodoacetamide, 0.5 mM sodium orthovanadate, 1 mM NaF and Brij96V
or digitonin as indicated. SBP-tagged TCR was eluted from streptavidin
beads with 4 mM biotin for 30 min at 4 °C. BN-PAGE was done as before
[48].

2.4. Preparation of GPMVs and determination of the partition coefficient
(Kp, raft)

To induce GPMV formation, cell blebbing was induced as described
[42,44] with either 25 mM paraformaldehyde (PFA) and 2 mM dithio-
threitol (DTT) or 2 mM N-ethylmalemide (NEM) for 4–6 hours at
37 °C in a Ca2+-containing buffer (150 mM NaCl, 10 mM Hepes and
2 mM CaCl2, pH 7.4). GPMVs were recorded with the confocal micro-
scope LSM780 from Zeiss and quantified with the ZEN2010 software
as reported [45]. Kp, raft (Kp, raft = intraft/intnon-raft) was determined by
line scans through the lo and the ld domain, and the resulting maximal
intensities were divided by each other. Imaging was done at 10 °C for
the PFA/DTT method and at 4 °C for the NEM method, since there is
no observable microscopic phase separation above these temperatures.

2.5. Preparation of plasma membrane spheres (PMSs)

PMSs were prepared as described previously [43]. Briefly, the cells
were incubated in PMS Buffer (1.5 mM CaCl2, 1.5 mM MgCl2, 5 mM
Hepes, 1 mg/ml glucose in 1x PBS (pH 7.4) for 4 hours at 37 °C. Then
(B) The parental MA5.8, M.mζ-GFP-SBP and 2B4 T cells were stained with an APC-coupled
rescence intensity are shown. (C) After lysis of the M.mζ-GFP-SBP cells in 0.5% Brij96V, the
teins of the lysate, the depleted lysate after the PD (supern.) and the eluate were separated
FP, anti-ζ and anti-CD3ε antibodies. (D) 2B4 (TCR) andM.mζ-GFP-SBP cells (TCR-GFP-SBP)
fer and separated by BN-PAGE (lanes 1, 2). Alternatively, the TCR-GFP-SBPwas purified as in
rker protein was ferritin in its 24-mer and 48-mer forms (f1, 440 kDa; f2, 880 kDa).



Fig. 3. The TCR-GFP localizes in the ld domain of GPMVs and PMS. GPMVs fromM.mζ-SBP/mζ-GFP cells were inducedwith NEM or PFA plus DTT and recordedwith a confocal microscope.
Thewhite scale bars represent 3 μm. Thefluorescence of theTCR-GFP is represented in green (A, B), the oneof rho-PE (A) and CTxB-Alexa 594 (B) in red. (C) Thepartition coefficientsKp, raft

of the TCR-GFP-SBP, rho-PE and CTxB-Alexa 594were determined. (D) GPMVs fromGFP-GPI expressing cells were induced with NEM and recordedwith a confocalmicroscope. The fluo-
rescence of GFP-GPI is displayed in green and the one of rho-PE in red. (E) PMSswere prepared fromM.mζ-SBP/mζ-GFP cells, labeledwith the non-raft probe, Fast DiI, and CTxB-Alexa 647
and recorded by confocal microscopy. The TCR-GFP is shown in green, Fast DiI in red and CTxB in deep purple. (F) Line scans as indicated in (E) were taken and the intensity profiles are
shown for the TCR-GFP, Fast DiI and CTxB.
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the cells were labeled with the non-raft probe, Fast DiI, and cholera
toxin subunit B for 5 minutes at room temperature. Afterwards, PMSs
were recorded by confocal microscopy at room temperature.

3. Results

3.1. The TCR-GFP forms nanoclusters

To study the localization of the TCR in GPMVs, amouse T cell line ex-
pressing a chimeric ζ chain comprising full lengthmouse ζ fused to GFP
and a streptavidin-binding peptide (SBP) was established (Fig. 2A). GFP
was used for the localization studies, and SBP for TCR purification. To
this end, the mouse 2B4-derived ζ-deficient cell line MA5.8 was trans-
duced with a plasmid encoding for murine ζ-GFP-SBP, resulting in the
M.mζ-GFP-SBP cell line. The expression of ζ-GFP-SBP was verified by
flow cytometry (Fig. 2B, top panel). The expression of ζ-GFP-SBP
allowed the TCR to assemble completely (TCR-GFP), as demonstrated
by reconstitution of TCR surface expression in the TCR-negative MA5.8
cell line (Fig. 2B, lower panel). Next, we directly examined the integrity
of the TCR complex. M.mζ-GFP-SBP cells were lysed and ζ-GFP-SBP was
purified by pull-down with streptavidin-coupled beads. After elution
with biotin, an aliquot of the lysate, the depleted supernantant obtained
after pull-down, and the biotin eluate were analyzed by SDS-PAGE and
WB. The ζ-GFP-SBP chimera was purified efficiently and was intact as
indicated by the appearance of a signal at the expected molecular
weight of 44 kDa in the anti-GFP and the anti-ζ WB (Fig. 2C, lanes 2–
4), which was 18 kDa higher than purified GFP (lane 1). Purification of
ζ-GFP-SBP led to the copurification of CD3ε (lane 4). Since ζ and CD3
co-purify only in the complete TCR complex [1], these results showed
that ζ-GFP-SBP is integrated in a fully assembled TCR.
To test whether the ζ-GFP-SBP-containing TCR (TCR-GFP) can form
nanoclusters, a BN-PAGE analysis was conducted (Fig. 2D). Wild-type
2B4 T cells or M.mζ-GFP-SBP cells (containing TCR-GFP) were lysed in
the detergent Brij96V (lanes 1–4), which keeps the TCR nanoclusters in-
tact, or digitonin (lane 5), which disrupts TCR nanoclusters [14,24]. Then,
the cell lysates (lanes 1 and 2) and streptavidin-purified material (lanes
3-5)were separated by BN-PAGE and analyzed by anti-ζWB. In the pres-
ence of Brij96V, single TCRs and nanoclustered complexes were formed
by the TCR-GFP (lanes 2, 4), which were larger in size than the com-
plexes formed by the wild-type TCR (lane 1). As expected, only the
tagged TCR was purified with streptavidin beads (lane 4) whereas the
wild-type TCR was not (lane 3). In the presence of digitonin (lane 5),
only single TCR-GFP (and no nanoclusters) were detected. Small
amounts of non-assembled ζ-GFP-SBP were also detected.

In conclusion, single TCRs and nanoclustered complexes were
formed by the TCR-GFP, resembling the wild type TCR.

3.2. The TCR is localized in the disordered phase of GPMVs and PMSs

GPMVs are cytoskeleton-free plasma membrane vesicles, which
maintain the protein and lipid diversity of native membranes, and
therefore present a coherent model system to determine protein local-
ization in domains of biological membranes by confocal microscopy
[49]. To study the partitioning of the TCR in GPMVs, two distinct
methods were applied to induce formation of the GPMVs: one was
based on N-ethylmaleimide (NEM) and the other on paraformaldehyde
(PFA) plus dithiothreitol (DTT). The TCR-GFP colocalized with
rhodamine-PE (rho-PE), a lipid dye that strongly partitions to the
non-raft phase (Fig. 3A). In contrast, no overlap was observed between
the GFP-TCR and the raft marker, fluorescently-labeled cholera toxin B
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subunit (CTxB-Alexa 594) (Fig. 3B). The partitioning coefficients (Kp)
for TCR-GFP-SBP, rho-PE, and CTxB were determined (Fig. 3C). The Kp

of TCR-GFP-SBP is similar to that of rho-PE, and very different to that
of CTxB. Hence, the TCR-GFP-SBP partitioned to the non-raft domain
of GPMVs. As a control, GFP linked to glycosylphosphatidylinositol
(GFP-GPI) was enriched in the raft domain (Fig. 3D), as expected [45].

These data were corroborated by the use of plasma membrane
spheres (PMS) [43–46]. We observed that the TCR-GFP partitioned
into the Fast DiI-rich phase, which corresponds to the disordered
phase, but is not enriched in the CTxB-positive phase (Fig. 3E and F). To-
gether these findings support the idea that the TCR is preferably found
in the non-raft phase in T cells.

3.3. Both single and nanoclustered TCRs are in detergent-solublemembrane
fractions

Previous studies observed that the resting TCR is present in the soluble
protein fractions after DRM preparations [30,31]. However, these studies
did not differentiate between the single and the nanoclustered TCR. Here,
wemade use of the characteristic of lipid rafts to float on a sucrose gradi-
ent when lysed on ice with a polyoxyethylene detergent [28,50–52]. To
investigate whether both TCR forms localize to the same membrane do-
main, we lysed Jurkat T cells in 0.75% Brij96V (a polyoxyethylene deter-
gent) on ice and performed a sucrose gradient centrifugation to
separate the DRM fraction from the soluble protein fraction. After centri-
fugation, individual fractions were separated by BN-PAGE (Fig. 4). Single
TCRs and nanoclusters were both exclusively found in the fractions corre-
sponding to soluble protein (lanes 10–12, upper panel), whereas the con-
trol molecule GM1 was, as expected, specifically found in the DRM
fractions (lanes 2–6, lower panel).

4. Discussion

4.1. All TCR forms are localized to the non-raft domain

In this work we show that the resting TCR is localized in the
disordered/non-raft phase of physiological plasmamembranemixtures.
Fig. 4. The single andnanoclustered TCR is present innon-raftmembranes. To separate de-
tergent resistant from soluble membranes, Jurkat T cells, expressing a wild type TCR, were
lysed in ice cold 0.75%Brij96V and a sucrose gradient centrifugationwas conducted at 0 °C.
The individual fractions (1 to 12, from top to bottomof the gradient)were analyzedby BN-
PAGE followed by WB using anti-ζ antibodies (top panel). With the same fractions a dot
blot was prepared and the cholera toxin B subunit (CTxB) was used to detect the lipid
raft marker ganglioside GM1.
To do so we used state-of-the-art cell biology techniques, such as the
generation of GPMVs and PMSs, demonstrating that the GFP-tagged
TCR co-localizes with the rhodamine-PE and Fast DiI-rich phases, and
not with the CTxB-stainable phase. This observation is consistent with
recent studies demonstrating that the resting TCR is located in the ld
phase of GUVs [20]. Since the GUVs were composed of few defined
lipids the physiological relevance of the data was not clear.

Non-raft localization of the TCR is in line with the finding that GPI-
anchored proteins, which are constitutively present in raft domains,
were not concentrated in TCR domains [33] and that TCR immunoisolates
are not enriched in the raft-marker GM1 [32]. In contrast to these find-
ings, it was reported that the TCR colocalized with GM1 in resting T
cells [35,36]. In these experiments, GM1 was stained with CTxB, which
predominantly binds to GM1, but also to other sugar structures with ter-
minal galactose [53]. Importantly, binding of CTxB to T cells influenced T
cell signaling [54–56]. Thus, Janes et al. might have studied a partially ac-
tivated rather than a resting T cell. Further, the apparent colocalization of
GM1 and the TCR might be due to convolutions of the PM at these sites
[33]. Together, with these data, our results suggest that the resting TCR
is localized in the non-raft microdomains phase in natural lipid mixtures
and in defined lipid compositions. Consistent with our findings, the lipid
environment around the TCR is not condensed in the resting state [57],
and unsaturated fatty acid levels are elevated in the vicinity of the TCR,
as shown by lipid mass spectrometry of TCR immunoisolates [58].

Finally, we found that both the single and nanoclustered TCRs were
present in the detergent soluble membranes fractions when Jurkat cells
were lysed in Brij96V at 0 °C. This detergent was chosen because it
keeps the nanoclustered TCRs intact [14,24] and at the same time does
not solubilize detergent-resistant membranes, as shown with Brij98V
[34]. Since the TCR (and especially the nanoclustered TCR) binds to
cholesterol andmost likely also to sphingomyelin [20], and since choles-
terol and sphingomyelin are a crucial component of lipid rafts, it is
remarkable that all TCRs were found in the detergent soluble mem-
branes (Fig. 4) and likewise localized to the non-raft domains (Fig. 4).
In the following paragraphs we aim to formulate molecular mecha-
nisms that might contribute to TCR nanoclustering.
4.2. Protein-based TCR nanoclustering

For a number of TM (and soluble) proteins it has been shown that
homotypic protein–protein interactions are involved in forming oligo-
meric assemblies. For example, self-association of syntaxin 1 relies on
weak protein–protein interactions, forming nanoclusters of approximate-
ly 60 nm containing around 75 syntaxin molecules [59]. Certain protein
domains in the extracellular region of TNF receptor family members
have been identified to self-associate to form stable trimers [60–62]. Sim-
ilarly, protein–protein interactions between ectodomains of the erythro-
poietin receptor (EPOR) cause stable receptor dimerization [63,64]. In
case of the TCR, we found by using immuno-gold EM that TCRs often
have a distance of 10 nm in the nanoclusters [12,14,65]. Since TCRs
have a diameter of approximately 10 nm [66], TCRs might be in direct
contact to each other, allowing for direct protein–protein interactions.
Possible subunits to be involved have been identified: TCRα and ζ.
When the ectodomains of TCRα and TCRβ linked to the TM and cytoplas-
mic regions of the EPOR were expressed, at least two TCRαβ interacted
[67]. The responsible regions were the C and F strands as well as the AB
loop of the constant immunoglobulin domain of TCRα (the Cα domain,
Fig. 5A). Concerning ζ, we showed that a mutation in the TM region
(L19A) in the context of a complete TCR, significantly reduced the forma-
tion of TCR nanoclusters [12] (Fig. 5B). However, whether leucine 19 of ζ
is involved in protein–protein interactions within the membrane, or in
binding to lipids that mediate the clustering (see below) is not known.

Biochemically we did not detect any other protein that would have
been part of the TCR nanoclusters in stoichiometric amounts [14]. How-
ever, we cannot exclude that an additional protein (such as a scaffold



Fig. 5.Mechanisms to control the TCR-TCR interaction. The TCR subunits and the cholesterol/sphingomyelin islet (chol) are shown from the top view (upper panels) and the lateral view
(lower panels). (A) The C and F strands as well as the AB loop of Cαmediate the homotypic TCR-TCR interaction. (B) In the membrane L19 of ζmediates the interaction. (C) Cholesterol
(and sphingomyelin) bind specifically to TCRβ, forming a raft islet. Since the TCR is located to the non-raft domain, the raft islet needs to be shielded from the non-raft surroundings. This
can be achieved by TCR nanoclustering. (D) It might also be that TCRβ and ζ together bind to cholesterol.
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protein) mediates TCR-TCR interactions that might be present in sub-
stoichiometric amounts.
4.3. Lipid-based TCR nanoclustering

Themost familiar concept ofmembrane organization is based on the
finding that lipids can segregate into distinct micro- (or nano-)domains
[28,68]. In lipid rafts cholesterol, sphingomyelin and lipidswith saturat-
ed fatty acids form a liquid-ordered phase, whereas unsaturated fatty
acids predominate in the liquid-disordered phase. Although the
existence of lipid rafts in living cells was questioned [53], it now be-
comes clear that they exist [58,69,70], although smaller and more tran-
sient than originally thought. Hence, proteins that segregate into lipid
rafts, such as glycosylphosphatidylinositol (GPI)-linked proteins,
might form lipid-based clusters. However, sometimes homophilic pro-
tein interactions are also involved [71].

In several studies we could show that cholesterol and sphingomyelin
are required to form TCR nanoclusters (see introduction). Thus, themost
straightforward model could have been that TCRs nanocluster when lo-
calized to lipid rafts, and stay single TCRs when localized to the non-
raft domain. However, this is not the case, since we show here that
nanoclustered TCRs are not present in lipid rafts.

Another important hint for the formulation of a model of how TCRs
nanocluster, comes from our earlier finding, that the TCRβ chain specif-
ically binds to cholesterol. In the complete TCR complex, only TCRβ and
not any other subunit was cross-linked to radioactive cholesterol [20].
We suggest the following model of TCR nanoclustering addressing the
possible role of lipids in this process (Fig. 5C).

The single TCRs localize in the non-raft phase. In addition, the TCRβ
chain specifically binds to cholesterol within themembrane [20], which
might recruit lipids with saturated fatty acids, such as sphingomyelin.
Thus, as small raft islet forms at one defined site of the TCR. Even
when a small raft islet has formed at the TCRβ chain, the rest of the
TCR is still present in the non-raft domain. However, to shield the raft
islets from the non-raft domain, TCRs form nanoclusters (such as di-
mers, Fig. 5C). Indeed, TCR dimer formation is dependent on cholesterol
and sphingomyelin [20].

Whether TCRβ alone binds to cholesterol or whether in addition ζ
also binds to cholesterol (e.g. using amino acid L19, Fig. 5D) is not
known. Please note that the cross-linker group in cholesterol might
only have faced TCRβ, so that a possible interaction with ζ might not
have been resolved in this assay.
4.4. Factors that control the size of TCR nanoclusters

So far three potential TCR-TCR interaction sites have been identified
and thus a number of possible TCR-TCR arrangements could be envis-
aged (Fig. 6). According to the suggestion by Kuhns and Davis of how
the individual subunits are arranged [67,72], which is reflected in the
upper panels of Fig. 5, all three sites are located on the same side of
the TCR. This could result in the formation of either dimers (Fig. 6A), im-
plying that additional mechanisms need to cause larger nanoclusters, or
strings of TCRs (Fig. 6B). In favor of the second possibility, our immuno-
gold EM pictures often show linear strings of TCRs [14]. These linear ar-
rangements could also be in line with the model shown in Fig. 6C, in
which each TCR contacts its neighbour TCR by only one interaction
site. In addition we also saw irregular TCR nanoclusters as depicted in
Fig. 6D. However, other segregation mechanisms such as involvement
of the TCR's sugar groups, the actin cytoskeleton, or additional TCR-
TCR contact sites cannot be excluded as additional driving forces for
TCR nanoclustering. In analogy to the syntaxin 1 nanoclusters [59], we
suggest that the TCR nanoclusters are dynamically regulated, so that in-
dividual TCRs can leave and join the cluster.

In contrast to ζ–ζ or TCRα–TCRα interactions, the cholesterol-based
TCR nanoclustering seems to be a mechanism that can be manipulated
by the cells. Thus, by altering the concentration of cholesterol the size
and number of TCR nanoclusters can be controlled. In fact naïve T cells
have low cholesterol levels in their PM and few TCR nanoclusters,
whereas the PMs of memory T cells have higher cholesterol content
andmore TCR nanoclusters [12,73]. A deeper discussion is found in a re-
cent review [3].

So far we have only discussed mechanisms that contribute to TCR
nanoclustering. But how about mechanisms that limit the size of the
clusters? Firstly, reduced cholesterol concentrations cause less and
smaller TCR clusters (see above). Secondly, it was observed that disrup-
tion of the actin cytoskeleton led to larger TCR nanoclusters [15]. This is
in line with the idea the cortical actin cytoskeleton beneath the plasma
membrane forms fences, that TM proteins cannot easily pass [74]. Ac-
cording to this model, smaller TCR nanoclusters could not reach each
other, since they would be separated by the actin network. Alternative-
ly, depolymerization of actin could enhance TCR nanoclustering due to
the lack of appropriate anchoring in the membrane. Therefore, increas-
ing cholesterol content and the cortical actin cytoskeleton could be
exerting opposing effects on the size of TCR nanoclusters, resulting in
a regulation of the minimum and maximum limits of TCR oligomeriza-
tion. This regulation of TCR nanocluster size could be essential to control



Fig. 6.Mechanisms of TCR nanoclustering. The three so far identified inter-TCR–TCR interactions (TCRβ-raft islet-TCRβ, ζL19-ζL19 and Cα-Cα) are indicated by red arrows. (A) All three
interactions are usedwithin one TCRdimer. (B) One TCR can simultaneously interactwith two TCRs, leading to linear or zig-zagged TCR strings. (C, D) One TCR can simultaneously interact
with three TCRs, leading either to ordered arrangements (C) or to irregular TCR assemblies (D).

808 K. Beck-García et al. / Biochimica et Biophysica Acta 1853 (2015) 802–809
the extent of cooperativity between the TCRs and the avidity towards
multivalent ligands and thereby the sensitivity of T cells for antigen.
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