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Abstract  

 

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterised by progressive loss of upper and 

lower motor neurons. ALS is on a pathogenetic disease spectrum with frontotemporal dementia (FTD), with 

patients sometimes experiencing elements of both conditions (ALS-FTSD). For mutations associated with ALS-

FTSD, such as the C9orf72 hexanucleotide repeat expansion (HRE), the factors influencing where an individual 

may lie on this spectrum require further characterisation. Here, using NanoString molecular barcoding with a 

panel of 770 neuroinflammatory genes, we interrogate inflammatory dysregulation at the level of gene expression. 

We identified 20 dysregulated neuroinflammatory genes in the motor cortex of deeply clinically phenotyped C9-

ALS post-mortem cases, with enrichment of microglial and inflammatory response gene sets. Our analyses also 

revealed two distinct ALS-related neuroinflammatory panel signatures (NPS), NPS1 and NPS2, delineated by the 

direction of expression of proinflammatory, axonal transport and synaptic signalling pathways.  Two genes with 

significant correlations to available clinical metrics were selected for validation: FKBP5 and BDNF. FKBP5 and 

its signalling partner, NF-κB, appeared to have a cell-type-specific staining distribution, with activated (i.e., 

nuclear) NF-κB immunoreactivity in C9-ALS. Expression of BDNF, a correlate of disease duration, was 

confirmed to be higher in individuals with long compared to short disease duration using BaseScope™ in situ 

hybridisation. Finally, we compared NPS between C9-ALS cases and those from deeply clinically phenotyped 

sporadic ALS (sALS) and SOD1-ALS cohorts, with NPS1 and NPS2 appearing across all cohorts. A subset of 

these signatures was also detected in publicly available RNA-sequencing data from independent C9-ALS and 

sALS cohorts, underscoring the relevance of these pathways across cohorts. Our findings highlight the importance 

of tailoring therapeutic approaches based on distinct molecular signatures that exist between and within genetic 

and sporadic cohorts.  
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Introduction 

 

Hexanucleotide repeat expansions (HREs) in the C9orf72 gene are one of the most common mutations associated 

with amyotrophic lateral sclerosis (ALS) and ALS-frontotemporal spectrum disorder (ALS-FTSD)1–4. Clinical 

manifestations of disease associated with C9orf72 HRE are variable; presentations can involve motor or cognitive 

symptoms related to ALS-FTSD, or other symptoms such as parkinsonism and psychosis5–8. This heterogeneity 

occurs despite a seemingly unifying neuropathological phenotype characterised by p62, TDP-43 and dipeptide 

repeat protein (DPR) deposits9–14. Clinical heterogeneity has the potential to be a large confounding factor in 

clinical trials including people with ALS-FTD, which often employ outcome measures based on clinical 

phenotypes. Thus, a better understanding of the molecular mechanisms underlying the clinical heterogeneity seen 

in C9-ALS, and people with ALS-FTD generally, is critical for informing the design of therapeutics intended to 

reduce specific symptom burden, as well as for improved trial stratification, so that endpoints can be more 

meaningfully measured.  

 

One potential factor influencing variable disease presentation in people with ALS-FTD is immune function and 

its related inflammatory processes. Inflammatory factors such as regulatory T cells and interleukins have 

previously been shown to be associated with the rate of disease progression15–17. Furthermore, differences in 

neuroinflammatory markers like CHIT1 and GFAP have been observed in the cerebrospinal fluid between ALS, 

FTD and ALS-FTSD patients18,19, suggesting that differential processes, particularly those regulated by neuroglia, 

may be occurring between conditions18. As C9orf72 is highly expressed in microglia20, the resident immune cells 

of the central nervous system, it has been suggested that microglia may be particularly susceptible to any negative 

consequences of a change in normal C9orf72 protein function, thus triggering immune dysfunction21, as evidenced 

by knockout C9orf72 models22,23. We have previously shown with immunohistochemical staining of post-mortem 

tissue that microglial activation is elevated in the language-related region Brodmann area (BA) 39 in language-

impaired C9-ALS cases24. Additionally, we have demonstrated with random forest modelling that microglial 

staining is an accurate classifier of C9-ALS, with better sensitivity and specificity to disease than other markers 

such as astrocyte activation marker, GFAP, and phosphorylated TDP-43 aggregate marker, pTDP4324.  Thus, 

further characterisation of immune dysfunction and its influence on clinical heterogeneity in C9-ALS, especially 

at a molecular level, is warranted to understand how these pathways can be more specifically targeted to harness 

their therapeutic potential.  

 

To date, few studies have taken a targeted approach to measuring the expression of neuroinflammatory genes in 

a C9-ALS cohort, particularly in post-mortem tissue. One recent study observed a general enriched immune 

response in post-mortem frontal cortex tissue from C9orf72 HRE carriers25, though this response was not explored 

further as the focus of the study. To interrogate inflammatory dysregulation in this context at a molecular level, 

we performed NanoString molecular barcoding on post-mortem motor cortex from a cohort of deeply clinically 

phenotyped C9-ALS and C9-ALS-FTSD cases to explore differential expression of 770 neuroinflammatory genes. 

We identified 20 significantly differentially expressed neuroinflammatory genes in a deeply clinically phenotyped 

C9-ALS post-mortem tissue cohort, revealing clustering of therapeutically relevant gene expression patterns. We 

compared gene expression patterns with immunohistochemical data from our previous study to examine 
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relationships between gene dysregulation and neuropathological staining24 We also performed regional validation 

of two genes correlating with clinical scores using both immunohistochemical and BaseScope™ in situ 

hybridisation techniques. Finally, we identified similarities and differences in inflammatory signatures between 

C9-ALS, sporadic ALS (sALS), and SOD1-ALS cohorts, as well as in publicly available frontal cortex RNA 

sequencing data from independent C9-ALS and sALS cohorts26.  

 

Methods  

Case identification and cognitive profiling 

Post-mortem tissue from cases with ALS or ALS-FTSD (n = 33) was obtained from the Medical Research Council 

(MRC) Edinburgh Brain Bank (Table 1, Table 3). For genetic classification of all ALS cases, repeat-primed 

polymerase chain reaction (PCR) was carried out for C9orf72 HRE identification and whole genome sequencing 

was carried out to identify other ALS-associated mutations. SOD1-ALS cases were confirmed to have an I114T 

missense mutation27. Sporadic cases had no family history of ALS, and no ALS-associated mutations identified 

through gene panel analysis27.  Post-mortem tissue from controls age- and sex-matched to C9-ALS cases (n = 10) 

with no history of neurological conditions or neurodegenerative pathology was obtained from the Edinburgh 

Sudden Death Brain Bank. Post-mortem tissue was collected with ethics approval from East of Scotland Research 

Ethics Service (16/ES/0084) in line with the Human Tissue (Scotland) Act (2006); the use of post-mortem tissue 

for studies was approved by the Edinburgh Brain Bank ethics committee and the Academic and Clinical Central 

Office for Research and Development (ACCORD) medical research ethics committee (AMREC). Clinical data 

were collected for the Scottish Motor Neurone Disease Register (SMNDR) and Care Audit Research and 

Evaluation for Motor Neurone Disease (CARE-MND) platform, with ethics approval from Scotland A Research 

Ethics Committee (10/MRE00/78 and 15/SS/0216). Donor patients underwent neuropsychological testing with 

the Edinburgh Cognitive and Behavioural ALS Screen (ECAS)28. Clinical correlates of motor dysfunction/disease 

progression include disease duration (months) and sequential ALS functional rating scale (ALSFRS) data points. 

Clinical correlates of cognition include Edinburgh Cognitive and Behavioural ALS Screen (ECAS) scores for 

ALS-specific and ALS non-specific subdomain scores. All patients consented to use of their data during life. 

 

NanoString sequencing and analysis 

RNA from human tissue was extracted using the RNAstorm FFPE RNA extraction kit (Cell Data Sciences, 

Fremont, CA, USA) on two 10 µm curls per sample cut from BA4. RNA was eluted in 50 uL nuclease-free water, 

after which sample concentrations were measured using a NanoDrop 1000 (ThermoFisher Scientific, Waltham, 

MA, USA). Samples that did not meet the minimum 60 ng/uL were concentrated using an Eppendorf Concentrator 

Plus (Eppendorf, Hamburg, Germany) for 10 minutes at 45°C, measured again, and concentrated for an additional 

5 minutes at 45°C if necessary. Samples were diluted in nuclease-free water to a final concentration of 600 ng 

RNA in 10 uL water for NanoString sequencing. Sequencing was performed by Host and Tumour Profiling Unit 

(HTPU) Microarray Services with the nCounter neuroinflammation panel (for more information see 

https://nanostring.com/products/ncounter-assays-panels/neuroscience/neuroinflammation/), which includes 770 

genes related to immunity and inflammation, neurobiology and neuropathology, and metabolism and stress29 

(Supplementary Material). All samples passed routine quality control checks. Differential gene expression 
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analyses between control and ALS cohorts were performed in RStudio (R version 4.1.1)30 using “DESeq2”31 

(version 1.32.0) with “RUVSeq”32 (version 1.26.0) to estimate and regress out unwanted variation (k = 3 factors 

of unwanted variance33). P-values were adjusted using Benjamini-Hochberg false discovery rate thresholds (p < 

0.05). Plots were made using the “ggplot2” package34  (version 3.3.5)  in R. Gene ontology (GO) enrichment 

analysis35 was performed with the “topGO” package (version 2.44.0)36 in R, and gene set analysis correlation 

adjusted mean rank (CAMERA)37 from the “limma” package38 (version 3.48.3) in R was performed using the 

Molecular Signatures Database (MSigDb)39,40 GO category terms, with the nCounter neuroinflammation gene 

panel as the background gene set and gene annotations taken from Ensembl (version 96)41. GO and CAMERA 

results were considered significant if -log10(p-value) > 1.3; significant CAMERA results were filtered for gene 

sets with n = 10+ genes. Clustering analyses were performed using the “pheatmap” package42 (version 1.0.12) in 

R. Correlations of IHC and ECAS data with housekeeping-normalised counts were calculated with the “corrplot” 

package43 (version 0.91) in R, using Spearman’s test. Gene set testing was also performed with cell-type-specific 

gene sets derived from published Brain RNA-seq data20 to determine cell-type-specific dysregulation of 

transcripts. For this analysis, ratios were calculated for the expression of each gene in each cell type compared to 

its maximum expression in any other cell type. ‘Human_(cell type)_5_times’ indicates all genes for which the 

calculated ratio is >5, ‘human_(cell type)_10_times’ indicates all genes for which the calculated ratio is >10, and 

‘human_(cell type)_top100’ indicates the 100 genes with the highest ratio for that cell type, that is, the most 

specific genes for each cell type. Differential expression analysis between NPS1 and NPS2 cases in the C9-ALS 

cohort was conducted as above, and all genes with an unadjusted p-value < 0.05 and adjusted p-value ≠ NA were 

taken through clustering analyses with the “pheatmap” package42 (version 1.0.12) in R. 

 

Public RNA sequencing data analysis 

A raw count matrix of publicly available frontal cortex and cerebellum RNA sequencing data26 were accessed via 

the NCBI Gene Expression Omnibus (accession number GSE67196). Data were divided by brain region and 

counts for C9-ALS and sALS cases were extracted. Data were variance stabilised and scaled (i.e., z-transformed) 

across samples using “DESeq2”31 (version 1.32.0) in RStudio (R version 4.1.1)30. Clustering analyses were 

performed for each region using the “pheatmap” package42 (version 1.0.12) in R. Heatmaps included equivalent 

demographic, clinical or pathological information available with the public data analysed: sex, region of onset, 

and disease duration.  

 

Immunohistochemistry (IHC) 

Post-mortem brain tissue was obtained from Brodmann areas (BA) BA4, BA39, BA44, BA46 and fixed in 10% 

formalin for a minimum of 72 h. These regions were selected for their associations with clinical phenotypic 

correlates as we have shown previously28; BA4 – motor, BA39 – language, BA44 – fluency and language, BA46 

– executive function. For this validation dataset, an additional case and alternate control (Case 11 and Control 11 

in Supplementary Materials) were included due to differences in tissue availability at the time of request. Tissue 

was dehydrated in a 70–100% ascending alcohol series and subsequently washed three times for 4 hours in xylene. 

Three 5-hour paraffin wax embedding stages were performed, after which formalin‐fixed, paraffin-embedded 

(FFPE) tissue was cooled and sectioned on a microtome (ThermoFisher Scientific) into 4 μm serial sections. 

Sections were placed on Superfrost (ThermoFisher Scientific) microscope slides and left to dry overnight at 40°C. 
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Sections were dewaxed with successive xylene washes, hydrated with alcohol, and treated with picric acid to 

remove formalin pigment and quench lipofuscin. For NF-κB staining, antigen retrieval was carried out in Tris-

EDTA buffer (pH 9) in a pressure cooker for 30 min, after which a Novolink Polymer detection system44 was used 

with an Abcam anti‐ NF-κB antibody (Abcam, Cambridge, UK) at a 1 in 1500 dilution. For FKBP5 staining, 

antigen retrieval was carried out in citric acid buffer (pH 6) in a Pressure King Pro pressure cooker for a 20 min 

cycle; samples were heated to 140°C and incubated for 5 min, after which pressure was manually released. The 

Novolink Polymer detection system (Leica Biosystems, Newcastle, UK) was then used with an anti-FKBP5 

antibody (OriGene, Rockville, MD, USA) at a 1 in 80 dilution. Staining was performed with 3,3’-

diaminobenzidine (DAB) chromogen and counterstained with haematoxylin, as per standard operating 

procedures, after which slides were dehydrated, washed in xylene, and coverslips mounted using DPX mountant 

(Sigma Aldrich, St. Louis, MO, USA). For sequential staining, slides initially stained with NF-κB or FKBP5 were 

soaked in xylene overnight, after which the coverslips were carefully removed, and the slides were soaked for 

several more hours until the DPX mountant had dissolved off the sections. Slides were re-stained according to 

standard operating procedures mentioned above, from hydration, to citric acid antigen retrieval with a pressure 

cooker, to staining with an anti-Iba1 antibody (Abcam) at a 1 in 3000 dilution. Protocols for CD68, Iba1, pTDP43 

and GFAP staining were described previously24. Manual grading of neuronal and glial TDP-43 burden was 

performed by a pathologist (JMG) using a scale from 0 to 3 as outlined in a previous study45.  

 

Image analysis  

For analysis of NF-κB and FKBP5 immunohistochemical staining, whole tissue sections were scanned with 

Brightfield at 40x magnification using a Hamamtsu NanoZoomer XR (Hamamatsu Photonics (UK) Ltd, Welwyn 

Garden City, UK). Using NDP.view2 viewing software (Hamamatsu), regions of interest (ROIs) were taken from 

key regions for quantification. Three ROIs were taken from grey matter regions including layer V neurons, and 

three ROIs were taken from white matter regions. ROIs were analysed with QuPath software46 cell segmentation; 

cells were segmented using a watershed method based on haematoxylin counterstaining, with different parameters 

for grey and white matter and for neurons and glia to best distinguish between cell types. Full scripts used for the 

automated cell segmentation and quantification of NF-κB and FKBP5 are included in Supplementary Information. 

Cells were classified as nuclear- and/or cytoplasmic-positive for each stain based on the DAB mean intensity of 

each compartment. Measurements were exported at the image (number of nuclear- and/or cytoplasmic-positive 

cells) and cell level (intensity and morphological features). Data were visualised in RStudio with the “ggplot2” 

package34  (version 3.3.5). Data were found to be non-normal via Shapiro-Wilk’s test and subjected to non-

parametric tests (i.e., Mann-Whitney U for two-group comparisons, pairwise Wilcoxon for three-group 

comparisons and Spearman’s for correlations). Comparisons were only conducted between groups with n ≥ 3. 

Results were presented as ungrouped or grouped by brain region, grey or white matter, and vascular or non-

vascular adjacent. Analysis methods for CD68, Iba1, pTDP43 and GFAP staining can be found in our previous 

study24.  

 

BaseScopeTM in situ hybridisation  
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In situ hybridisation was performed on tissue sections using BaseScope reagents (Advanced Cell Diagnostics, 

Newark, CA, USA) as per the manufacturer’s instructions47 and as described previously48. Probe hybridisation 

was performed using BaseScopeTM probes for BDNF mRNA transcripts. Slides were counterstained using 

haematoxylin and lithium carbonate, washed in xylene, and coverslips were mounted using DPX Mountant. For 

BDNF BaseScopeTM in situ hybridisation, due to the sparsity of mRNA transcripts, expression was quantified 

manually by a pathologist (JMG), who was blinded to clinical data, and a second rater (OMR), who performed a 

20% validation check, no discrepancies were identified between raters. Expression was quantified using a product 

score comprising of two factors: total transcript count per high-power field (40X) x total number of transcript-

positive cells per high-power field. Ten high-power fields were evaluated and averaged across each case.  

 

Results 

Two distinct neuroinflammatory signatures exist in C9-ALS  

 
To explore C9orf72 mutation-related changes to glial activation at the gene expression level, motor cortex tissue 

was sequenced using NanoString molecular barcoding, which provides accurate mRNA counts without the need 

for amplification steps that favour highly abundant transcripts29. This method circumvents RNA degradation 

issues related to post-mortem autolysis, as probes bind to the central, most preserved portion of mRNA transcripts. 

A panel of 770 neuroinflammation-related genes was used, and differential expression analyses were conducted; 

raw and processed gene expression data are available in the Supplementary Information. The analysis revealed a 

list of 20 genes that were significantly differentially expressed between C9-ALS cases and controls (Figure 1a). 

The microgliosis we observed previously in C9-ALS24 is supported here by the upregulation of CD163, a marker 

of macrophage activity, and the downregulation of P2RY12, a marker of microglial homeostasis49,50. The 20 

significantly differentially expressed genes clustered into two similarly sized groups, those that were upregulated 

in C9-ALS (SERPINA3, S100A10, FKBP5, EMP1, CD163, SPP1, CP, CTSE, BAG3), and those that were 

downregulated (ARC, RALB, EGR1, JUN, COX5B, P2RY12, BDNF, SLC17A6, BAD, MFGE8, FOS) relative to 

control cases. GO enrichment analysis revealed associations of these significantly dysregulated genes with 

pathways implicated in processes such as AP-1 complex signalling, pri-miRNA transcription, Smad-signalling, 

neuron projection and death, post-translational protein modification, and acute-phase response (Figure 1b). 

Importantly, as the number of significantly dysregulated genes in this analysis is relatively low, the GO findings 

must be interpreted with caution. Thus, we also employed a competitive gene set analysis, CAMERA, which 

considers whole shifts in expression of groups of genes based on fold changes. Neuron development, projection, 

and differentiation, gene sets were downregulated in C9-ALS cases relative to controls, as well as gene sets for 

synaptic structure, plasticity and transmission, cell projection organisation, and cytochrome C release; blood 

microparticle, platelet degranulation, endopeptidase inhibitor activity, and inflammatory response gene sets were 

upregulated (Figure 1c). Finally, microglia-specific genes were found to be significantly upregulated in our 

dataset, in line with our previous findings24, further supporting an increase in microglial activation24 (Table 2).  

 

Examination of gene expression differences in C9-ALS cases across the whole neuroinflammatory panel revealed 

the existence of two distinct gene expression signatures, herein referred to as neuroinflammatory panel signature 
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1 and 2 (NPS1 and NPS2); these signatures defined two disease clusters and were delineated by the direction of 

expression of two gene clusters (Figure 1d). The clearest phenotypic distinctions between NPS1 and NPS2 

observed were that of manually graded glial TDP-43 burden and language impairment as determined by the 

Edinburgh Cognitive and Behavioural ALS Screen (ECAS), with highest TDP-43 burden and language 

impairment only occurring in NPS1. GO analysis of C9-ALS gene clusters revealed an enrichment of immune 

and inflammatory response pathways in gene cluster 1, such as positive regulation of interleukin-8, NF-κB  and 

interferon-gamma responses (Figure 1e). By contrast, gene cluster 2 exhibited an enrichment of axonal transport 

and synaptic signalling pathways (Figure 1d). To determine which genes within the panel were contributing to the 

delineation of these clusters, differential expression analysis was conducted to identify differentially expressed 

genes between cases exhibiting NPS1 and NPS2 expression signatures. Forty-seven genes were included in a new 

clustered heatmap (herein referred to as the NPS-defining gene list), exemplifying a clearer contrast between the 

direction of expression of genes between the two signatures (Figure 1f). These genes were mostly from original 

gene cluster 2, related to axonal transport and synaptic signalling (Figure 1g). 

 

Differentially expressed genes correlate with microglial and pTDP-43-related immunohistochemical features in 

C9-ALS 

 

To explore the relationship of differentially expressed genes in C9-ALS with glial activation and TDP-43 burden 

(Figure 2a), we correlated microglia-, astrocyte-, and TDP-43-related immunohistochemical data from our 

previous digital pathology study24 with transcript counts of the 20 differentially expressed genes identified in 

Figure 1. These data consisted of digitally extracted features (i.e., stain-positive superpixel counts, a measurement 

of stain abundance) from stained motor cortex (BA4) of the same C9-ALS cohort included in the current study, 

and included Iba1 (i.e., homeostatic microglia), CD68 (i.e., activated macrophage), GFAP (i.e., activated 

astrocyte), and pTDP43 (i.e., phosphorylated TDP-43 aggregate) staining. Expression levels of several genes were 

found to correlate significantly with the number of CD68+ or pTDP43+ superpixels, with positive correlations 

between CD68+ and proinflammatory genes (e.g., FKBP5, CD163, SPP1), as well as with molecular chaperone 

regulator BAG3, and negative correlations between pTDP43 and the expression of JUN and FOS, subunits that 

form the transcription factor complex activator protein 1 (AP-1). (Figure 2b). When subdivided by disease status, 

the significant proinflammatory correlations with CD68+ were lost in controls, and a significant negative 

correlation of homeostatic microglia marker P2RY12 expression with pTDP43+ appeared (Figure 2b). Finally, a 

positive correlation with expression of the growth factor BDNF with pTDP43+ superpixels was seen in C9-ALS 

but not controls (Figure 2b). Interestingly, when cases were divided by NPS, NPS1 cases exhibited more positive 

correlations with stain abundance, while NPS2 correlation coefficients were more often negative (though non-

significant). These data suggest distinct NPS-related directionality in correlations between gene expression and 

pathological features such as TDP-43 aggregation and glial activation (Figure 2c), in line with our observation 

that C9-ALS cases with a predominance of NPS1 gene expression were more likely to have higher glial TDP-43 

aggregation burden (Figure 1d). 

 

 

FKBP5 expression correlates significantly with clinical metric of executive dysfunction for C9-ALS 
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To investigate possible relationships between differential transcription patterns and cognition, we examined 

correlations between differential gene expression and ECAS scores, for the 20 genes we identified as most 

differentially expressed between C9-ALS cases and controls. (Figure 3a); FKBP5 and COX5B were found to 

negatively correlate with executive score. These relationships must be interpreted with caution as gene expression 

was measured in the motor cortex and not regional correlates of ECAS scores; however, it may be that changes 

in the motor cortex are reflective of changes in the relevant regions and may reflect a global cortical burden of 

disease. The immunophilin FK506-binding protein 51 (FKBP5) modulates inflammation through nuclear factor-

κB (NF-κB) signalling51,52, and forms a chaperone complex with a heat shock protein (HSP90) in response to 

stress53. We interrogated whether this was also the case in C9-ALS brain tissue by using immunohistochemistry, 

rather than in situ hybidisation, as the functional form of NF-κB is a protein whose cellular localisation and 

expression level determines its function. Serial tissue sections were stained with FKBP5 and NF-κB and compared 

between control and C9-ALS tissue. No evidence of a significant increase in nuclear/cytoplasmic FKBP5 intensity 

ratios was observed, though there was a general trend towards an increase in C9-ALS (Supplementary Figure 1). 

However, significant increases in nuclear/cytoplasmic NF-κB intensity ratios were found in BA4 grey matter in 

C9-ALS, suggesting upregulation of this pathway in disease (Figure 3b). Upon sequential staining of the same 

FKBP5- or NF-κB-stained tissue with Iba1, cell-type-specific staining was observed for both FKBP5 and NF-κB 

(Figure 3c). Notably, microglia were found to be FKBP5+, accompanied by both FKBP5+ and FKBP5- neuroglia 

of other subtypes. Contrastingly, microglia were the only glial subtype found to be NF-κB+ (Figure 3d). Finally, 

when cases were stratified by inflammatory signature, NPS1 cases exhibited significantly higher 

nuclear/cytoplasmic NF-κB ratios in grey matter glia in BA4, and significantly lower ratios in neurons in 

extramotor BA44 (Figure 3e). 

 

 

BDNF expression correlates significantly with disease duration in C9-ALS 

 

To explore relationships between expression of the 20 differentially expressed genes in C9-ALS and disease 

progression, gene expression was correlated with disease duration and ALSFRS slope of decline, identifying a 

positive correlation between BDNF expression and disease duration (Spearman’s R = 0.64, p = 0.047) (Figure 

4a). BaseScopeTM in situ hybridisation was used to validate our finding that BDNF expression correlates with 

disease duration in C9-ALS. BDNF expression in BA4 was manually graded using a product score to account for 

both cell and regional transcript abundance. BDNF was predominantly expressed in neurons, with heterogeneous 

abundance, at both the cell and regional level (Figure 4b). We confirmed a positive correlation between BDNF 

expression and disease duration (Figure 4c). Individuals with a short disease duration (i.e., less than 48 months 

post-onset)54 consistently showed lower levels of BDNF expression, while individuals with long disease duration 

(i.e., more than 48 months post-onset) exhibited higher expression.  

 

 

Distinct inflammatory signatures exist across C9-ALS, sALS and SOD1-ALS cohorts 
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To interrogate whether the observed inflammatory signatures were specific to C9-ALS or common across multiple 

ALS cohorts, we next applied the nCounter Neuroinflammation Panel to sALS and SOD1-ALS cohorts (Table 3). 

Differentially expressed genes between each cohort and controls were largely different, with no overlap of genes 

passing the FDR threshold present in all three cohorts (Figure 5a-b). GO analysis of these genes revealed both 

distinct and shared significant terms across cohorts related to immune function and proteostasis, as well as other 

pathways (Supplementary Materials). Distinct terms included response to interleukin, microRNA gene 

transcription, neuronal death, post-translational protein modification, aggrephagy and chaperone-mediated protein 

transport in C9-ALS; cell development and morphogenesis in sALS; and translation initiation, protein kinase B 

signalling, chaperone-mediated protein folding in SOD1-ALS. Overlap included postsynaptic neurotransmission 

in C9-ALS and sALS, glial migration in C9-ALS and SOD1-ALS, and chemokine-mediated signalling, and T 

cell, B cell, and natural killer cell processes in sALS and SOD1-ALS (Supplementary Materials). Despite these 

differences, heatmap cluster analysis of C9-ALS, sALS, and SOD1-ALS cases using the filtered NPS gene list 

revealed two distinct NPS subgroups, present across the included cohorts, again delineated by the expression of 

two gene clusters related to immune response or axonal transport and synaptic processes (Figure 5c; 

Supplementary Figure 2a-b for full panel and GO). The two subgroups also did not appear to segregate clearly 

based on our available clinical metrics for cognitive function or glial pTDP-43 burden, unlike what was observed 

within the C9-ALS cohort alone. Interestingly, differential expression analysis revealed significant dysregulation 

of immune response genes (i.e., complement and microglial genes) in cognitively impaired cases (C9-ALS, sALS) 

(Supplementary Figure 2c-d) while only one significantly dysregulated gene, CNN2, was detected between 

unimpaired cases (C9-ALS, sALS) and controls. As such, it is possible that cognitively impaired cases have 

convergent disease mechanisms despite being from different cohorts, while unimpaired cases may be too diverse 

to detect significant dysregulation in this context. 

 

To test the generalisability of the filtered NPS gene list from C9-ALS cases across ALS cohorts, the list was next 

applied to the clustering analysis including cases from all cohorts (Figure 5a). Genes clustered in the same way 

as in the C9-ALS analysis (Figure 1e), and groups were delineated such that C9-ALS cases remained divided as 

previously. Opposite directions of expression were most apparent in the 40 genes encompassed within the clades 

comprising the lower quadrants of the heatmap (Figure 5c). The gene list was next tested further on an independent 

cohort of post-mortem frontal cortex and cerebellum of eight C9-ALS and ten sALS cases from publicly available 

RNA sequencing data26 (Figure 5d). Strikingly, in the frontal cortex, clustering analysis revealed a very distinct 

delineation between NPS1 and NPS2, present across both cohorts and particularly defined by the direction of 

expression of 20 of the genes in the filtered list (Figure 5c). Notably, this effect did not persist in the cerebellum, 

for which the clustering analysis using the filtered gene list did not reveal distinct subgroups (Supplementary 

Figure 2e), highlighting the possibility of region-specific inflammatory signatures.  

 

 

Discussion 

 

This study investigated neuroinflammatory differences in deeply clinically phenotyped ALS post-mortem tissue, 

allowing us to compare molecular data directly with motor and cognitive as well as immunohistochemical 
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features. We found an upregulation of microglia-specific genes in C9-ALS, substantiating previous findings of 

microglial dysregulation in cases with this genetic background17,24. Microglia have been shown to require C9orf72 

for normal function in C9orf72 -/- microglia and peripheral myeloid cell models, demonstrating a pro-

inflammatory response as a result of C9orf72 knockout22,23. Thus, haploinsufficiency resulting from C9orf72 HRE 

may lead to the microglial dysregulation observed both here and elsewhere. In line with this, expression of many 

hits was shown to correlate with microglial and pTDP43 staining quantification.  

 

Two genes whose expression was found to correlate with clinical scores (BDNF, FKBP5) were further validated 

with spatial resolution using immunohistochemistry or BaseScopeTM in situ hybridisation. C9-ALS-related 

increased nuclear localisation, and thus activation of FKBP5 signalling partner, NF-κB, was observed in neurons 

and glia in both motor and extramotor regions, along with exhibition of microglia-specific NF-κB staining in 

white matter. Activation of NF-κB in glia is indicative of an upregulation of an inflammatory response mediated 

by IKKa/b kinases55, which are negatively regulated by autophagy56,57. It is possible that the more pro-

inflammatory signature, increased BA4 grey matter glial NF-κB activation, and higher TDP-43 burden seen in 

NPS1 is related to lower levels of negative regulation via autophagy. Indeed, the NLRP3 inflammasome, as well 

as several autophagy-related genes (i.e. ATGs), are part of Gene Cluster 1; activation of NLRP3 is also increased 

with autophagy deficiency57–59. Thus, therapeutic studies involving the use of autophagy-targeting drugs may seek 

to consider stratification of cases based on inflammatory signatures to ensure the meaningful measurement of 

outcomes.   

 

The utility of transcriptome data for identifying molecular signatures that correlate with survival has been recently 

demonstrated identifying a subgroup of ALS patients with poorer survival with differential expression of genes 

relating to oxidative phosphorylation60,61. Here we identify BDNF expression as a clinical correlate of survival, 

highlighting the additional mechanistic insights afforded through our targeted approach. Expression of BDNF, or 

brain-derived neurotrophic factor, in the motor cortex was found to be downregulated in disease, and positively 

correlated with disease duration, suggesting a protective effect. BDNF signalling has been previously 

demonstrated to have either neuroprotective62 or indirectly excitotoxic effects63. BDNF expression has also been 

shown to correlate with decreased cognition64. Importantly, many preclinical studies investigating the effects of 

BDNF in ALS are biased toward SOD1 mouse models65,66, in which increased BDNF-TrkB is observed67. Further, 

a phase III clinical trial conducted using recombinant methionyl human BDNF did not demonstrate therapeutic 

benefit, though this study and further trials conducted thereafter did not stratify genetically; importantly, C9orf72 

mutations in ALS had not been discovered at the time68,69. In contrast to SOD1 models, this study shows that 

BDNF expression is downregulated in C9-ALS post-mortem tissue, and C9-ALS cases appear to have a more 

inflammatory background; thus, BDNF-related treatments may function differently in a C9-ALS context. 

Expression of BDNF by immune cells was found to promote neuronal survival in human tissue culture70. 

Moreover, subcutaneous perfusions of BDNF have been shown to reverse microglial activation in aged mice71, 

perhaps through indirect downregulation of microglial MHC-II expression72. As such, cell type-specific 

manipulation of BDNF expression may provide a more nuanced approach to controlling microglial activation and 

neuronal loss. In addition to a possible treatment, BDNF could also have utility as a biomarker for disease 

prognosis. Recently, BDNF and pro-BDNF levels in CSF were shown to be associated with survival in ALS 
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patients; in line with our discussion, C9-ALS patients showed significantly lower serum BDNF levels than non-

carriers73.  

 

While previous studies have used RNA sequencing to investigate and identify important gene expression 

signatures across the transcriptome26,60, our targeted approach to investigating neuroinflammatory signatures 

without amplification bias ensured a focused evaluation of neuroinflammation specifically. We identified two 

distinct molecular profiles, NPS1 and NPS2, with immune response terms enriched in Gene Cluster 1 and axon 

transport and synaptic signalling terms enriched in Gene Cluster 2. These signatures do not segregate clearly with 

known demographic, clinical, or pathological data in our cohorts suggesting that these signatures are not readily 

identifiable through visible features. These signatures are present in multiple ALS cohorts, within our study and 

in an independent publicly available dataset, underscoring their generalisability and, crucially, highlighting the 

importance of molecular stratification in clinical trials. Clinical trials may benefit from employing stratification 

methods based on molecular markers rather than, or in addition to, genetic and clinical criteria, as without 

stratification a positive effect of treatments on a particular subgroup may be obscured. For example, the recent 

macrophage-targeted sodium chlorite trial (NP001) showed no overall effect on the primary outcome measure74. 

However, subsequent subgroup analysis showed that those that did have a beneficial therapeutic response to the 

drug had higher than average levels of circulating IL-18 and LPS (akin to our NPS1), implying that molecular 

stratification by key circulating inflammatory markers could enable us to treat a subset of ALS patients for whom 

inflammation plays a more substantial role74. Our data would suggest that a combinatorial blood-based biomarker 

approach75, using circulating markers derived from a gene panel such as ours, validated across distinct ALS patient 

populations (as in Figure 5d), would be a more appropriate way to identify subgroups that would benefit from 

targeted therapies. Promising candidates are based on the 20 genes from our NPS-defining gene list that strongly 

delineate clusters in an independent, publicly available dataset (i.e., GRIN2B, RALB, BCL2L2, PINK1, MAP2K1, 

TBR1, PAK1, ATP6V1A, NEFL, GRIA1, CAMK4, MEF2C, CD47, MAPK10, RAB6B, PRKACB, RB1CC1, 

HOF1A, GCLC) and two additional NPS-defining genes (CD44 and TYROBP) that also appear in a recently 

identified gene list defining a molecular subgroup relating to glial activation61. Molecular stratification, in the 

form of tissue derived and circulating biomarkers, is the mainstay of patient stratification for clinical trials in 

oncology76; given the convergence of these studies with our data, molecular subtyping should be considered for 

future trials implementing targeted therapies in people with ALS. 

 

 

 

 

 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 20, 2023. ; https://doi.org/10.1101/2023.01.19.524561doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.19.524561
http://creativecommons.org/licenses/by/4.0/


 
 

Figure 1. Two distinct neuroinflammatory signatures exist in C9-ALS  
(a) Volcano plot showing differentially expressed genes between C9-ALS cases and controls by log2 fold change and -log10 p-value. Non-

significant genes are represented in red and significant genes (i.e., surpassing the Benjamini-Hochberg false discovery rate (FDR) threshold 

of p-adjusted < 0.05) are represented in blue. (b) GO enrichment analysis of genes enriched in C9-ALS cases by type with -log10(p-value) 

score showing the top 12 most differentially expressed gene sets. Italicised terms indicate downregulation; key genes for each term are shown 

to the left; (c) CAMERA gene set analysis of gene sets dysregulated in ALS cases, with the number of genes for each set shown to the left, 

showing the top 10 most differentially expressed gene sets. (d) Clustered neuroinflammation panel heatmap including expression of entire 

NanoString panel (770 genes), showing two distinct neuroinflammatory panel signatures (NPS1 & NPS2) in C9-ALS. Gene clusters 1 & 2 

are boxed, with opposite directions of expression between NPS. Clinical (region of onset, disease duration, ECAS) and pathological (neuronal 

and glial pTDP-43 burden) keys are shown. (e) GO enrichment analysis for Gene Cluster 1 and 2 (that define NPS1 and NPS2) showing top 

12 most differentially expressed gene sets. Italicised terms indicate downregulation; (f) Clustered neuroinflammation panel heatmap including 

only differentially expressed genes between C9-ALS cases with NPS1 and NPS2, showing two distinct NPS, with genes listed on the right; 

(f) Venn diagram showing overlap between genes from the filtered NPS gene list in (e) with Gene Cluster 1 and 2 from (d-e). MF, molecular 

factor; CC, cellular component; BP, biological process. 
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Figure 2. Differentially expressed genes correlate with microglial and pTDP-43-related 

immunohistochemical features in C9-ALS 
(a) Example images of immunohistochemical stains quantified using QuPath for correlations with NanoString 

neuroinflammation panel housekeeping-normalised counts. (b) Control-specific, C9-ALS-specific, and overall significant 

correlations of prominence scores for Iba1, CD68, pTDP-43 and GFAP stains with NanoString normalised counts for 20 

dysregulated genes in C9-ALS from Figure 1a. (d) NPS1- and NPS2-specific correlations of prominence scores for Iba1, 

CD68, pTDP-43 and GFAP stains with NanoString normalised counts for 20 dysregulated genes in C9-ALS from Figure 1a. 

Spearman’s R correlation coefficients are indicated by colour, and correlations with a p-value < 0.05 are marked with an 

asterisk.  
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Figure 3. FKBP5 expression correlates significantly with clinical metric of executive dysfunction 
(a) Correlation between language, fluency, and executive scores from ECAS and NanoString normalised counts for 20 dysregulated genes in 

C9-ALS from Figure 1a. Spearman’s R correlation coefficients are indicated by colour, and correlations with a p-value < 0.05 are marked 

with an asterisk. (b) Nuclear/cytoplasmic NF-κB intensity ratio quantification for neuronal (left), grey matter glial (middle) and white matter 

glial (right) staining between ALS and controls, stratified by brain region. * p < 0.05. (c) Double staining with FKBP5 or NF-κB and Iba1 to 

identify microglia-specific staining in BA4 (motor) and BA39 (extramotor; language). Microglia positive for FKBP5 or NF-κB are indicated 

with blue arrows, other positive glia are indicated with orange arrows, and other negative glia are indicated with white arrows. (d) Increased 

magnification images of FKBP5+Iba1 and NF-κB +Iba1 staining, with positive/negative glia indicated as described in b. (e) 

Nuclear/cytoplasmic NF-κB intensity ratio quantification for neuronal (left), grey matter glial (middle) and white matter glial (right) staining 

between NPS1 and NPS2, stratified by brain region. * p < 0.05.  
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Figure 4. BDNF expression correlates with disease duration in C9-ALS 
(a) Significant correlation between BDNF expression and disease duration. Spearman’s R and p-value is shown with a linear regression line 

and 95% confidence interval. (b) Example images of BaseScope™ in situ hybridisation of BDNF probes in short and long survivors. (c) 

Significant correlation between mean BDNF transcript abundance (product score) and survival (i.e., disease duration (months)). Spearman’s 

R and p-value is shown with a linear regression line and 95% confidence interval. 
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Figure 5. C9-ALS, sALS and SOD1-ALS cohorts exhibit both overlapping and unique neuroinflammatory 

signatures  
(a) Volcano plot showing differentially expressed genes for C9-ALS (n=10), sALS (n=18) or SOD1-ALS (n=5) compared to controls by log2 

fold change and -log10 p-value. Non-significant genes are represented in red and significant genes surpassing the Benjamini-Hochberg false 

discovery rate (FDR) threshold (i.e., p-adjusted < 0.05) are represented in blue. (b) Venn diagram showing the overlap of differentially 

expressed genes from (a) across cohorts, with arrow indicating direction of differential expression. (c) Clustered heatmap with filtered NPS 

gene list from Figure 1f, showing two distinct neuroinflammatory signatures across C9-ALS, sALS, and SOD1-ALS cohorts. Gene clusters 1 

& 2 are boxed, with opposite directions of expression. Demographic (cohort, sex), clinical (disease duration, ECAS) and pathological (pTDP-

43 burden) keys are shown. (d) Clustered heatmap with filtered NPS gene list from Figure 1f, showing two distinct neuroinflammatory 

signatures in the frontal cortex across C9-ALS and sALS cases from an independent, publicly available dataset, delineated particularly by the 

the 20 genes comprising the top quadrants of the heat map. Key is the same as in (c). 
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Table 1. C9-ALS cohort demographics 

 

 

 

 

 

 

 

 

 

 

 

 

 

Case 
Number Sex 

Age at 
death 

(y) 
Clinical Diagnoses 

Disease 
duration 

(m) 

Region 
of onset ECAS ALSFRS 

Neuronal 
pTDP43 
burden 

Glial 
pTDP43 
burden 

C9-ALS 1 F 63 ALS 25 Lower 
Limb 

Yes 
(unimpaired) No 2 2 

C9-ALS  2 M 50 ALS 29 Bulbar 
Yes 

(language 
dysfunction) 

Yes (4 data 
points) 

2 3 

C9-ALS  3 F 63 ALS 30 Upper 
limb No Yes (3 data 

points) 
2 2 

C9-ALS  4 F 62 ALS 37 Mixed Yes 
(unimpaired) 

Yes (6 data 
points) 

1 2 

C9-ALS  5 F 65 ALS 44 Lower 
limb No Yes (2 data 

points) 
1 2 

C9-ALS 6 M 65 ALS 50 Upper 
limb No Yes (1 data 

point) 
1 1 

C9-ALS 7 M 62 ALS 50 Lower 
limb 

Yes 
(executive 

dysfunction) 

Yes (2 data 
points) 

2 0 

C9-ALS 8 M 43 ALS 57 Bulbar 
Yes 

(language 
dysfunction) 

No 
1 2 

C9-ALS 9 M 58 ALS 87 Lower 
limb 

Yes 
(language 

dysfunction) 

Yes (3 data 
points) 

3 3 

C9-ALS 10 F 63 ALS, FTD, 
Schizophrenia 119 Upper 

limb 
Yes (FTD – 3 

domains) No 2 3 

Control 1 F 65 Hypertension, 
Cardiomyopathy N/A N/A N/A N/A   

Control 2 M 50 None N/A N/A N/A N/A 1 0 

Control 3 F 57 None N/A N/A N/A N/A 0 0 

Control 4 F 57 None N/A N/A N/A N/A 0 0 

Control 5 F 71 
Depression, 

Paranoid 
Schizophrenia 

N/A N/A N/A N/A 
0 0 

Control 6 M 58 Depression N/A N/A N/A N/A 1 0 

Control 7 F 59 Hypertension N/A N/A N/A N/A 0 0 

Control 8 M 44 None N/A N/A N/A N/A 0 0 

Control 9 M 63 None N/A N/A N/A N/A 0 0 

Control 10 F 61 Depression, MS, 
hypothyroidism N/A N/A N/A N/A 0 0 
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Table 2. Cell-type-specific dysregulation in C9-ALS based on Brain RNA-seq data. 

 

gene_set NGenes Direction PValue FDR 

human_microglia_5_times 113 Up 8.58E-04 0.03089637 

human_microglia_10_times 78 Up 0.00983159 0.08848435 

human_endothelial_top100 12 Up 0.02976191 0.13392859 

human_microglia_top100 38 Up 0.03978398 0.15913592 

human_endothelial_5_times 18 Up 0.04770685 0.17174467 

human_endothelial_10_times 13 Up 0.05512601 0.18041241 

human_fetal_astrocytes_5_times 46 Down 0.13938532 0.34892127 

human_neuron_5_times 19 Down 0.21064688 0.42102263 

human_fetal_astrocytes_10_times 22 Down 0.22756045 0.42102263 

human_neuron_top100 5 Down 0.24559653 0.42102263 

human_neuron_10_times 8 Down 0.27457446 0.44930366 

human_fetal_astrocytes_top100 7 Down 0.67226571 0.84000835 

human_mature_astrocytes_5_times 9 Up 0.67667339 0.84000835 

human_oligodendrocyte_5_times 24 Down 0.73334664 0.86196644 

human_mature_astrocytes_10_times 5 Up 0.76421218 0.86196644 

human_mature_astrocytes_top100 7 Down 0.76619239 0.86196644 

human_oligodendrocyte_top100 21 Up 0.80590044 0.8624924 

human_oligodendrocyte_10_times 14 Up 0.81457615 0.8624924 
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Table 3. sALS and SOD1-ALS cohort demographics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Case 
Number Sex 

Age at 
death 

(y) 
Clinical Diagnoses 

Disease 
duration 

(m) 
ECAS 

Neuronal 
pTDP43 
burden 

Glial 
pTDP43 
burden 

sALS 1 F 78 ALS 11 No 1 1 

sALS 2 F 76 ALS 12 No 2 2 

sALS 3 M 90 ALS 14 No 0 1 

sALS 4 M 70 ALS 16 Yes 
(unimpaired) 

1 2 

sALS 5 M 57 ALS, FTD 20 Yes (FTD – 3 
domains) 

1 1 

sALS 6 F 68 ALS 24 
Yes 

(behavioural 
dysfunction) 

1 1 

sALS 7 M 73 ALS 24 
Yes 

(executive 
dysfunction) 

0 0 

sALS 8 F 61 ALS 24 No 2 0 

sALS 9 M 75 ALS 50 No 1 2 

sALS 10 M 71 ALS 52 No 1 1 

sALS 11 F 50 ALS 54 Yes 
(unimpaired) 

1 1 

sALS 12 F 72 ALS 55 Yes 
(unimpaired) 

3 3 

sALS 13 F 72 ALS 60 No 2 1 

sALS 14 M 61 ALS 94 No 2 2 

sALS 15 F 81 ALS 98 No 2 1 

sALS 16 F 66 ALS 99 Yes (fluency 
dysfunction) 

0 2 

sALS 17 F 76 ALS, FTD 130 Yes (FTD – 3 
domains) 

1 1 

sALS 18 M 66 ALS 134 Yes 
(unimpaired) 

1 1 

SOD1-ALS 
1 M 46 ALS 14 Yes 

(unimpaired) 
0 0 

SOD1-ALS 
2 M 71 ALS 38 No 0 0 

SOD1-ALS 
3 M 64 ALS 67 Yes 

(unimpaired) 
0 0 

SOD1-ALS 
4 M 59 ALS 98 Yes  

(unimpaired) 
0 0 

SOD1-ALS 
5 F 75 ALS 127 No 0 0 
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