129 research outputs found

    Presentation, Clinical Pathology Abnormalities, and Identification of Gastrointestinal Parasites in Camels (Camelus bactrianus and Camelus dromedarius) Presenting to Two North American Veterinary Teaching Hospitals. A Retrospective Study: 1980–2020

    Get PDF
    Old World Camelids (OWC) represent two species (Camelus bactrianus and Camelus dromedarius) with increasing numbers in North America. Gastrointestinal (GI) parasitism is a major cause of clinical disease in camelids and leads to significant economic impacts. Literature reporting on clinical parasitism of camels is localized to India, Africa, and the Middle East, with limited information available on OWCs in North America. Objectives of this study were to report on clinical presentation and diagnostic findings in Camelus bactrianus and Camelus dromedarius with GI parasitism and provide a comparative analysis between geographic regions. Medical records of OWCs presenting to two veterinary teaching hospitals (of the University of Tennessee and University of Wisconsin) were evaluated. Thirty-one camels including 11 Bactrians and six dromedaries (14 species not recorded) were included for the clinical component of this study, reporting on signalment, presenting complaint, and clinical pathology. Anorexia, weight loss, and diarrhea were the most common presenting complaint. Clinical pathology findings included eosinophilia, hypoproteinemia, and hyponatremia. For the second component of this study, a total of 77 fecal parasite examination results were evaluated for parasite identification and regional variation. Trichuris, Capillaria, Strongyloides, Nematodirus, Dictyocaulus, Moniezia, and protozoan parasites (Eimeria, Cryptosporidium, Giardia) were recorded. Strongyle-type eggs predominated, followed by Trichuris and Eimeria spp. There was a statistically significant variation in prevalence of coccidia between the two regions, with fecal examinations from Tennessee more likely to contain Eimeria (P = 0.0193). Clinicians treating camels in North America should recognize anorexia, weight loss, and diarrhea combined with clinical pathologic changes of hypoproteinemia, eosinophilia and hyponatremia as possible indications of GI parasitism. Clinicians should also consider the potential for regional variation to exist for GI parasites of camels in different areas of North America

    An Experimental Area for Short Baseline Neutrino Physics on the CERN Neutrino Beam to Gran Sasso

    Get PDF
    A new neutrino beam line from the CERN SPS to the Gran Sasso laboratory in Italy is presently under study. The new neutrino beam will allow both long baseline and short baseline neutrino oscillation experiments to be performed. This report presents a conceptual design of the short baseline experimental area to be located at a distance of 1858 m from the neutrino target

    Pharmacokinetics of intramuscular maropitant in pigs (Sus scrofa domesticus)

    Get PDF
    Pigs are at risk of vomiting from medical conditions as well as the emetic side effects of drugs administered for peri-operative manipulations, but there is a lack of pharmacokinetic data for potential anti-emetic therapies, such as maropitant, in this species. The main objective of this study was to estimate plasma pharmacokinetic parameters for maropitant in pigs after a single intramuscular (IM) administration dosed at 1.0 mg/ kg. A secondary objective was to estimate pilot pharmacokinetic parameters in pigs after oral (PO) administration at 2.0 mg/kg. Maropitant was administered to six commercial pigs at a dose of 1.0 mg/kg IM. Plasma samples were collected over 72 h. After a 7-day washout period, two pigs were administered maropitant at a dose of 2.0 mg/ kg PO. Maropitant concentrations were measured via liquid chromatography/mass spectrometry (LC–MS/ MS). A non-compartmental analysis was used to derive pharmacokinetics parameters. No adverse events were noted in any of the study pigs after administration. Following single IM administration, maximum plasma concentration was estimated at 412.7 ± 132.0 ng/mL and time to maximum concentration ranged from 0.083 to 1.0 h. Elimination half-life was estimated at 6.7 ± 1.28 h, and mean residence time was 6.1 ± 1.2 h. Volume of distribution after IM administration was 15.9 L/ kg. Area under the curve was 1336 ± 132.0 h*ng/mL. The relative bioavailability of PO administration was noted to be 15.5% and 27.2% in the two pilot pigs. The maximum systemic concentration observed in the study pigs after IM administration was higher than what was observed after subcutaneous administration in dogs, cats, or rabbits. The achieved maximum concentration exceeded the concentrations for anti-emetic purposes in dogs and cats; however, a specific anti-emetic concentration is currently not known for pigs. Further research is needed into the pharmacodynam

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Performance and Operation of the CMS Electromagnetic Calorimeter

    Get PDF
    The operation and general performance of the CMS electromagnetic calorimeter using cosmic-ray muons are described. These muons were recorded after the closure of the CMS detector in late 2008. The calorimeter is made of lead tungstate crystals and the overall status of the 75848 channels corresponding to the barrel and endcap detectors is reported. The stability of crucial operational parameters, such as high voltage, temperature and electronic noise, is summarised and the performance of the light monitoring system is presented

    Temporal metabolic profiling of bone healing in a caprine tibia segmental defect model

    Get PDF
    Bone tissue engineering is an emerging field of regenerative medicine, with a wide array of biomaterial technologies and therapeutics employed. However, it is difficult to objectively compare these various treatments during various stages of tissue response. Metabolomics is rapidly emerging as a powerful analytical tool to establish broad-spectrum metabolic signatures for a target biological system. Developing an effective biomarker panel for bone repair from small molecule data would provide an objective metric to readily assess the efficacy of novel therapeutics in relation to natural healing mechanisms. In this study we utilized a large segmental bone defect in goats to reflect trauma resulting in substantial volumetric bone loss. Characterization of the native repair capacity was then conducted over a period of 12 months through the combination of standard (radiography, computed tomography, histology, biomechanics) data and ultra-high-performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) metabolic profiling. Standard metrics demonstrated that samples formed soft callus structures that later mineralized. Small molecule profiles showed distinct temporal patterns associated with the bone tissue repair process. Specifically, increased lactate and amino acid levels at early time points indicated an environment conducive to osteoblast differentiation and extracellular matrix formation. Citrate and pyruvate abundances increased at later time points indicating increasing mineral content within the defect region. Taurine, shikimate, and pantothenate distribution profiles appeared to represent a shift toward a more homeostatic remodeling environment with the differentiation and activity of osteoclasts offsetting the earlier deposition phases of bone repair. The generation of a comprehensive metabolic reference portfolio offers a potent mechanism for examining novel biomaterials and can serve as guide for the development of new targeted therapeutics to improve the rate, magnitude, and quality of bone regeneration

    Calibration of the CMS Drift Tube Chambers and Measurement of the Drift Velocity with Cosmic Rays

    Get PDF
    Peer reviewe

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe

    Commissioning and performance of the CMS silicon strip tracker with cosmic ray muons

    Get PDF
    This is the Pre-print version of the Article. The official published version of the Paper can be accessed from the link below - Copyright @ 2010 IOPDuring autumn 2008, the Silicon Strip Tracker was operated with the full CMS experiment in a comprehensive test, in the presence of the 3.8 T magnetic field produced by the CMS superconducting solenoid. Cosmic ray muons were detected in the muon chambers and used to trigger the readout of all CMS sub-detectors. About 15 million events with a muon in the tracker were collected. The efficiency of hit and track reconstruction were measured to be higher than 99% and consistent with expectations from Monte Carlo simulation. This article details the commissioning and performance of the Silicon Strip Tracker with cosmic ray muons.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Alignment of the CMS silicon tracker during commissioning with cosmic rays

    Get PDF
    The CMS silicon tracker, consisting of 1440 silicon pixel and 15 148 silicon strip detector modules, has been aligned using more than three million cosmic ray charged particles, with additional information from optical surveys. The positions of the modules were determined with respect to cosmic ray trajectories to an average precision of 3-4 microns RMS in the barrel and 3-14 microns RMS in the endcap in the most sensitive coordinate. The results have been validated by several studies, including laser beam cross-checks, track fit self-consistency, track residuals in overlapping module regions, and track parameter resolution, and are compared with predictions obtained from simulation. Correlated systematic effects have been investigated. The track parameter resolutions obtained with this alignment are close to the design performance
    corecore