32 research outputs found

    Review on new approach methods to gain insight into the feto-maternal interface physiology

    Get PDF
    Non-human animals represent a large and important feature in the history of biomedical research. The validity of their use, in terms of reproducible outcomes and translational confidence to the human situation, as well as ethical concerns surrounding that use, have been and remain controversial topics. Over the last 10 years, the communities developing microphysiological systems (MPS) have produced new approach method (NAMs) such as organoids and organs-on-a-chip. These alternative methodologies have shown indications of greater reliability and translatability than animal use in some areas, represent more humane substitutions for animals in these settings, and – with continued scientific effort – may change the conduct of basic research, clinical studies, safety testing, and drug development. Here, we present an introduction to these more human-relevant methodologies and suggest how a suite of pregnancy associated feto-maternal interface system-oriented NAMs may be integrated as reliable partial-/full animal replacements for investigators, significantly aid animal-/environmental welfare, and improve healthcare outcomes

    Ca-Stimulated Type 8 Adenylyl Cyclase Is Required for Rapid Acquisition of Novel Spatial Information and for Working/Episodic-Like Memory

    Get PDF
    Ca-stimulated adenylyl cyclases (ACs) transduce neuronal stimulation-evoked increase in calcium to the production of cAMP, which impinges on the regulation of many aspects of neuronal function. Type 1 and type 8 AC (AC1 and AC8) are the only ACs that are directly stimulated by Ca. Although AC1 function was implicated in regulating reference spatial memory, the function of AC8 in memory formation is not known. Because of the different biochemical properties of AC1 and AC8, these two enzymes may have distinct functions. For example, AC1 activity is regulated by both Ca and G-proteins. In contrast, AC8 is a pure Ca sensor. It is neither stimulated by Gs nor inhibited by Gi. Recent studies also suggested that AC1 and AC8 were differentially concentrated at different subcellular domains, implicating that Ca-stimulated signaling might be compartmentalized. In this study, we used AC8 knock-out (KO) mice and found behavioral deficits in memory retention for temporal dissociative passive avoidance and object recognition memory. When examined by Morris water maze, AC8KOmice showed normal reference memory. However, the acquisition of newer spatial information was defective in AC8 KO mice. Furthermore, AC8 KO mice were severely impaired in hippocampus-dependent episodic-like memory when examined by the delayed matching-to-place task. Because AC8 is preferentially localized at the presynaptic active zone, our results suggest a novel role of presynaptic cAMP signaling in memory acquisition and retention, as well as distinct mechanisms underlying reference and working/episodic-like memory

    Genomewide Association Scan of Suicidal Thoughts and Behaviour in Major Depression

    Get PDF
    Background Suicidal behaviour can be conceptualised as a continuum from suicidal ideation, to suicidal attempts to completed suicide. In this study we identify genes contributing to suicidal behaviour in the depression study RADIANT. Methodology/Principal Findings A quantitative suicidality score was composed of two items from the SCAN interview. In addition, the 251 depression cases with a history of serious suicide attempts were classified to form a discrete trait. The quantitative trait was correlated with younger onset of depression and number of episodes of depression, but not with gender. A genome-wide association study of 2,023 depression cases was performed to identify genes that may contribute to suicidal behaviour. Two Munich depression studies were used as replication cohorts to test the most strongly associated SNPs. No SNP was associated at genome-wide significance level. For the quantitative trait, evidence of association was detected at GFRA1, a receptor for the neurotrophin GDRA (p = 2e-06). For the discrete trait of suicide attempt, SNPs in KIAA1244 and RGS18 attained p-values of <5e-6. None of these SNPs showed evidence for replication in the additional cohorts tested. Candidate gene analysis provided some support for a polymorphism in NTRK2, which was previously associated with suicidality. Conclusions/Significance This study provides a genome-wide assessment of possible genetic contribution to suicidal behaviour in depression but indicates a genetic architecture of multiple genes with small effects. Large cohorts will be required to dissect this further

    Global perspectives on observing ocean boundary current systems

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Todd, R. E., Chavez, F. P., Clayton, S., Cravatte, S., Goes, M., Greco, M., Ling, X., Sprintall, J., Zilberman, N., V., Archer, M., Aristegui, J., Balmaseda, M., Bane, J. M., Baringer, M. O., Barth, J. A., Beal, L. M., Brandt, P., Calil, P. H. R., Campos, E., Centurioni, L. R., Chidichimo, M. P., Cirano, M., Cronin, M. F., Curchitser, E. N., Davis, R. E., Dengler, M., deYoung, B., Dong, S., Escribano, R., Fassbender, A. J., Fawcett, S. E., Feng, M., Goni, G. J., Gray, A. R., Gutierrez, D., Hebert, D., Hummels, R., Ito, S., Krug, M., Lacan, F., Laurindo, L., Lazar, A., Lee, C. M., Lengaigne, M., Levine, N. M., Middleton, J., Montes, I., Muglia, M., Nagai, T., Palevsky, H., I., Palter, J. B., Phillips, H. E., Piola, A., Plueddemann, A. J., Qiu, B., Rodrigues, R. R., Roughan, M., Rudnick, D. L., Rykaczewski, R. R., Saraceno, M., Seim, H., Sen Gupta, A., Shannon, L., Sloyan, B. M., Sutton, A. J., Thompson, L., van der Plas, A. K., Volkov, D., Wilkin, J., Zhang, D., & Zhang, L. Global perspectives on observing ocean boundary current systems. Frontiers in Marine Science, 6, (2010); 423, doi: 10.3389/fmars.2019.00423.Ocean boundary current systems are key components of the climate system, are home to highly productive ecosystems, and have numerous societal impacts. Establishment of a global network of boundary current observing systems is a critical part of ongoing development of the Global Ocean Observing System. The characteristics of boundary current systems are reviewed, focusing on scientific and societal motivations for sustained observing. Techniques currently used to observe boundary current systems are reviewed, followed by a census of the current state of boundary current observing systems globally. The next steps in the development of boundary current observing systems are considered, leading to several specific recommendations.RT was supported by The Andrew W. Mellon Foundation Endowed Fund for Innovative Research at WHOI. FC was supported by the David and Lucile Packard Foundation. MGo was funded by NSF and NOAA/AOML. XL was funded by China’s National Key Research and Development Projects (2016YFA0601803), the National Natural Science Foundation of China (41490641, 41521091, and U1606402), and the Qingdao National Laboratory for Marine Science and Technology (2017ASKJ01). JS was supported by NOAA’s Global Ocean Monitoring and Observing Program (Award NA15OAR4320071). DZ was partially funded by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA15OAR4320063. BS was supported by IMOS and CSIRO’s Decadal Climate Forecasting Project. We gratefully acknowledge the wide range of funding sources from many nations that have enabled the observations and analyses reviewed here

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Genetic Differences in the Immediate Transcriptome Response to Stress Predict Risk-Related Brain Function and Psychiatric Disorders

    Get PDF
    Depression risk is exacerbated by genetic factors and stress exposure; however, the biological mechanisms through which these factors interact to confer depression risk are poorly understood. One putative biological mechanism implicates variability in the ability of cortisol, released in response to stress, to trigger a cascade of adaptive genomic and non-genomic processes through glucocorticoid receptor (GR) activation. Here, we demonstrate that common genetic variants in long-range enhancer elements modulate the immediate transcriptional response to GR activation in human blood cells. These functional genetic variants increase risk for depression and co-heritable psychiatric disorders. Moreover, these risk variants are associated with inappropriate amygdala reactivity, a transdiagnostic psychiatric endophenotype and an important stress hormone response trigger. Network modeling and animal experiments suggest that these genetic differences in GR-induced transcriptional activation may mediate the risk for depression and other psychiatric disorders by altering a network of functionally related stress-sensitive genes in blood and brain

    Temporal and regional regulation of gene expression by calcium-stimulated adenylyl cyclase activity during fear memory.

    Get PDF
    The Ca2+-stimulated adenylyl cyclases (ACs), AC1 and AC8, are key components of long-term memory processing. AC1 and AC8 double knockout mice (Adcy1(-/-)Adcy8(-/-); DKO) display impaired fear memory processing; the mechanism of this impairment is largely unknown.We hypothesize that the Ca2+-stimulated ACs modulate long-lasting transcriptional changes essential for fear memory consolidation and maintenance. Here, we report a genome-wide study of gene expression changes associated with conditioned fear (CF) memory in wild-type and DKO mice to identify AC-dependent gene regulatory changes that occur in the amygdala and hippocampus at baseline and different time points after CF learning. We observed an overall decrease in transcriptional changes in DKO mice across all time points, but most strikingly, at periods when memory consolidation and retention should be occurring. Further, we identified a shared set of transcription factor binding sites in genes upregulated in wild-type mice that were associated with downregulated genes in DKO mice. To prove the temporal and regional importance of AC activity on different stages of memory processing, the tetracycline-off system was used to produce mice with forebrain-specific inducible expression of AC8 on a DKO background. CF behavioral results reveal that adult restoration of AC8 activity in the forebrain is sufficient for intact learning, while cessation of this expression at any time point across learning causes memory deficits.Overall, these studies demonstrate that the Ca2+-stimulated ACs contribute to the formation and maintenance of fear memory by a network of long-term transcriptional changes
    corecore