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Non-human animals represent a large and important feature in the history

of biomedical research. The validity of their use, in terms of reproducible

outcomes and translational confidence to the human situation, as well as ethical

concerns surrounding that use, have been and remain controversial topics.

Over the last 10 years, the communities developing microphysiological systems

(MPS) have produced new approach method (NAMs) such as organoids and

organs-on-a-chip. These alternative methodologies have shown indications of

greater reliability and translatability than animal use in some areas, represent

more humane substitutions for animals in these settings, and – with continued

scientific effort – may change the conduct of basic research, clinical studies,

safety testing, and drug development. Here, we present an introduction to these

more human-relevant methodologies and suggest how a suite of pregnancy

associated feto-maternal interface system-oriented NAMs may be integrated

as reliable partial-/full animal replacements for investigators, significantly aid

animal-/environmental welfare, and improve healthcare outcomes.
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Introduction

Since at least the fourth century Before Current Era, non-human animals have
represented a large and important feature of biomedical research (1). While that history has
occasionally been punctuated by the scientific victimization of certain human populations
(condemned criminals, victims of war crimes, slaves, and orphans), revulsion by and
rejection of such human experimentation by the majority of cultures left non-human animals
as the default organisms for studying human physiology and pathophysiology (1, 2). During
the more than one-thousand years before general anesthesia, there is no question that the
conduct of such studies involved a ghastly experience for the unfortunate non-human. It is
unlikely that early investigators accepted the Cartesian view of animals as automatons (3),
and more likely that they steeled their reasoning (if not sentiment) to these agonized animal
subjects as the best experimental substitute for their own species. Over many centuries,
different groups advocated for changes to – even abandonment of – this practice known
as vivisection. Arguably, the most important legislation for protecting animals used in
laboratory settings originated in the 19th-century (4, 5) and has continued to this date
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(5). The recently ratified Food and Drug Administration (FDA)
Modernization Act (6) contains an element of animal protection
by strengthening consideration of validated non-animal methods in
new drug regulatory submissions and by removing the requirement
of animal testing for biosimilars. While no legislation has promoted
either animal use or animal replacement, it is important to
understand the advantages and limitations of each, if the best
science is to be pursued.

Animal models

The history of animal use in research extends over more
than one and one-half millennia, while microphysiological systems
(MPS) are relative infants. Clearly, there has been far more
opportunity to scrutinize the value of animal use than that of
MPS and our comments herein solely focus on the scientific value
of each methodology. Animals are complete biological organisms,
while MPS exist as single, or multiple (less than complete organism
constituency) organ systems is created in specific formats by its
designers. The representation of an entire, very complex biology
is the largest advantage of animal use over presently available
MPS (7, 8). Conversely, despite the phenotypic resemblance of
many animal models to humans, mechanistic differences very often
exist at the cellular level. Additionally, animal models differ in
endocrine, paracrine, and immunological aspects to humans and
there are structural differences of intrauterine organs compared
to humans. Non-human primate models are the closest to human
pregnancy; however, their use in pregnancy research is limited
due to the high cost of conducting experiments to generate
statistically and biologically relevant data, scarcity in obtaining
the right models, and the duration of pregnancy. This leads
to translatability problems, which are their largest disadvantage.
In response, breeders of some animals used in laboratories will
genetically manipulate their stock to more closely “humanize”
them. However, as we learn more about the influence of other
factors such as the microbiome and silent genetic mutations,
this still may not be enough to “idealize” these animal models.
The use of systematic reviews may have some role in mitigating
this lack of similarity, by optimizing selection of well-defined
non-human experimental subjects. Regardless of these negatives
attached to animal models, they are the only complete near-human
representations that we have currently. For that reason, they have
maintained our attention and attract us to their use.

Non-animal methods/new approach
methods

A variety of MPS fill the categories of new approach methods
(NAMs). MPS are engineered microenvironments that recapitulate
the function of one or more organ systems. Among these
physiological and pathophysiological miniaturizations, there are
those which are subject to microfluidic flow and certain external
forces and others in which those features are absent. A complete
review and analysis of these types of systems (9) is beyond the
scope of this article, and we will limit our discussion to the general
groups of MPS and their most common applications. Our review

is to introduce the concept and utility of NAMs and we restrict
this review to describe NAMs developed to study feto-maternal
interface (FMi) biology.

Two-dimensional cell culture
systems

The present majority of cell culture models are those having
two dimensions (2D). They are the flat microscopic worlds familiar
to most investigators. On the downside, they do not approximate
the three-dimensional (3D) construct that is the human body, they
soil and damage their own space, and their predictivity for drug
development can be quite poor. Clearly, a methodological upgrade
would be valuable and MPS developers have created and continue
to create more human-relevant 3D systems.

Three-dimensional organ systems

Spheroids represent the entry level for 3D organ systems.
They are cultured as free-floating, spontaneously aggregating
(single cell or multicellular mixtures adhering to each other),
minimally complex and spherical cellular designs (10). They
derive from immortalized cell lines, primary cells, or human
tissue fragments and have found use in drug testing, nanoparticle
examination, and the study of neurodegenerative diseases
and liver physiology/pathophysiology (11). Heterogenous in
nature, spheroids contain layers of proliferating and non-
proliferating cells; of important note is the often-necrotic core
of larger spheroids, which results from diffusion difficulties of
nutrients and waste across their structures. However, this is
a problem that also provides an opportunity to the study of
drug delivery to the similarly necrotic cores of solid tumors
(12, 13).

Another tiny workhorse is the organoid, a microengineered,
self-assembling cluster of organ-specific cells arising from adult
stem cells, embryonic stem cells, or induced pluripotent stem
cells (iPSCs) (such as those from skin or blood which have
been reprogrammed into an embryonic-like pluripotent state)
(14). Unlike the cellular monocultures from which spheroids are
derived, the variety of stem cells producing organoids can self-
renew and differentiate into multiple lineages in vitro; this renewal
process is responsible for an organoid’s greater longevity. While
patient-derived tumor organoids and patient-derived spheroids
(tumorspheres) have a place in cancer research and precision
medicine strategies, the more functionally advanced organoid can
be sourced as a living tissue biobank, provide disease-specific
models, and (like some spheroids) be useful in drug screening (15–
17). The spheroid and organoids are now being developed and
getting used for several FMi research (18–27). These approaches
and tools will be optimized and available widespread for research
use in reproductive biology and medicine.

Organs-on-chips and Tissue-chips are the most sophisticated of
the MPS (28, 29). In addition to having 3D tissue architecture and
multiple cell type composition, they are subject to biomechanical
forces and linked by microfluidics, which permit accurate
recapitulation of certain key aspects of human physiology (30).
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This superiority to 2D models and the less advanced 3D
models (especially, viewed in consideration of the reliability
and translatability problems associated with animal use), should
encourage development of this MPS category as a pathway
toward developing species of interest (human) methodologies.
The challenges and limitations of such development have been
reviewed elsewhere (31) and we will only herein comment
that they are not yet engineered to full human physiological
complexity. Like animal models, MPS can have reproducibility
problems associated with cellular and other system variability.
These difficulties might diminish with improved standardization
of cellular and technical components. Additionally helpful are
resources such as that of the aggregated human and animal
exposure data contained within the publicly available University of
Pittsburgh Microphysiology Systems Database (MPS Db),1 which
can aid in the selection of the best Organ-on-chip system for a
particular study. Validation of Organs-on-chips, like other in vitro
methods, is of current developer and regulatory interest, but a
recent international roundtable of MPS stakeholders (privileged
communication-Second BWF MPS Roundtable) noted that animal
studies have not been subject to the same level of validation scrutiny
as that proposed for MPS. Such thought prompts continued study
of human MPS in various contexts, including its use in certain
studies of reproductive physiology/pathophysiology.

Pregnancy (maternal-fetal interface)
physiology NAMs

Pregnancy is a unique condition where two independent
physiological systems, the fetus and the mother, co-exist for a
defined period to maintain pregnancy and aid fetal growth and
development (32). This co-existence ends with parturition, a
unique synchronized process that terminates all homeostatic states
of pregnant uterine tissues (33–37). Unfortunately, an unacceptable
and growing number of pregnancies do not end at term with
the delivery of a fully developed fetus due to various adverse
pregnancy outcomes (APOs). Currently, mechanistic knowledge
of complex physiologic interactions between fetal and maternal
tissue that maintain pregnancy and potential drug actions to
treat APOs is unavailable. Due to this knowledge gap, therapeutic
interventions are limited during pregnancy, making women and
their fetuses a highly vulnerable population. The impact of maternal
exposures like drugs or vaccines (efficacy and toxicology) during
pregnancy is difficult to measure as longitudinal sampling of
intrauterine tissues and other biological specimens for analysis is
impractical. Similarly, various environmental exposures (pollutants
and toxicants) disrupting pregnancy homeostasis and contributing
to APOs are also difficult to predict. This lack of knowledge creates
a major clinical dilemma during pregnancy, and the only option is
to deliver the fetus prematurely, contributing to almost 1 million
neonatal deaths around the globe annually (38–44).

Pregnancy complications and outcomes like preterm births
are difficult to predict due to heterogeneities in the risk factors
and biomolecular pathways that are effectors of preterm labor.

1 https://upddi.pitt.edu/microphysiology-systems-database/

One of the major risk factors of pregnancy complications are
environmental pollutants and toxicants (45–56). An extensive
study on pregnant subjects that tested a broad array of 59
chemicals reported that 80% of the chemicals were commonly
found in both maternal and fetal samples (57), suggesting a
maternal-fetal transport and potential harm to pregnancies (58).
Unfortunately, epidemiological association between exposure and
APOs have not reduced PTB rates stemming from such exposures.
To better understand the impact of hazardous substances on
pregnancy risk, a molecular mechanistic knowledge by which
toxicants activate pathways causing preterm birth in maternal-
fetal tissues are needed. Animal models have not been successful
in determining pathological events contributing to adverse events
during pregnancy, primarily due to the differences in the endocrine
and paracrine systems between animal models and humans.
Current in vitro toxicity testing methods cannot be used to
accurately assess the hazard of tested substances on pregnancy
outcomes as homeostatic disturbances resulting in immune
imbalances at the feto-maternal interfaces cannot be measured
using current approaches. Exposure to environmental toxicants
often occurs in the form of mixed chemicals, especially during
environmental disasters. However, current hazard assessment is
conducted by evaluating single chemical at a time (59). It is
well understood that simply combining the effect of individual
chemicals cannot accurately determine the effect of mixed
chemicals (60, 61), a major gap and challenge that is also recognized
and prioritized (62, 63). It was found that, in some cases, when
comparing toxic effects of a mixture of chemicals, the combined
effects was greater than simply adding up the effects of the
individual components (64, 65). These results strongly indicate that
testing of actual environmental samples is desirable, rather than
assuming that the effects of individual components from a mixed
sample can be simply added together.

Therefore, reducing the risk of APOs is a global need (40, 66);
however, pregnant women are excluded from most clinical trials
and remain therapeutic orphans due to the lack of evidence for
proper intervention (67–71). Challenges in conducting research
and drug development, toxicology testing in pregnancy include (i)
recruitment hurdles due to the paucity of data needed to convince
the clinicians, subjects, and regulators of the utility of a drug in
pregnancy, (ii) absence of informative biomarkers to assess the feto-
placental response to therapeutics or other exposures, and (iii) lack
of suitable preclinical models (in vitro or animal models) to address
both pharmacokinetics and pharmacodynamics. These limitations
lead to the systematic exclusion of pregnant women from clinical
trials (68, 72).

Maintenance of human pregnancy and initiation of
parturition requires complex coordination of cells among the
fetal (placenta and fetal membranes)-maternal (cervix, decidua,
and myometrium) organs (F-M). Therefore, a critical challenge to
a reproductive scientist is modeling the coordinated inter-tissue
and intercellular interactions among various F-M uterine systems,
especially at the FMi tissues and their multiple functions that
maintain a harmonious state of pregnancy. Current studies using
2D cell cultures (73–75), mixed co-cultures (76–78), transwell
co-cultures (79–81), tissue explants (75, 82), organoids (83–85),
organ baths (86), and in vivo, animal models (87, 88) have
provided valuable information on respective organ systems’
contributions to pregnancy maintenance and some insights into
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malfunctions associated with adverse pregnancy events (89).
However, limitations associated with these models are far more
than reliable information needed for regulatory agencies to act on
an intervention or a biomarker to reduce the incidences of APOs.
The primary limitations of current cell culture models (2D or 3D
and transwells) are: (1) these models do not provide intercellular
interactions required to understand the homeostasis mechanisms
during pregnancy. Transwells are still limited to two cell type
models, (2) primary cells currently used do not survive many
passages to replicate data, (3) difficulty to control inter individual
variability of cells when tissues are collected from different subjects
for cell isolation, and (many cell lines are not derived from
pregnancies (e.g., choriocarcinoma cell lines used as the placental
cell) and do not reflect true physiology expected during pregnancy,
and (4) explant cultures can generate plethora of data; however, still
cellular manipulations (gene knockout studies, cellular interaction
studies, cell type specific response studies, etc.) are difficult.

Improving women’s reproductive health and fetal and neonatal
outcome require physiologically relevant and experimentally
manipulatable models that can generate high throughput data
to study the human intrauterine organ system. Recent advances
in our group’s efforts to create a suite of five pregnancy
and women’s health-focused human MPS that model “healthy”
and “disease” states of intrauterine tissues (90–97) present a
unique opportunity to translate them into drug development
tools. A biomimetic “organ-on a-chip (OOC)” recapitulates the
multi-cellular organ system as seen in vivo using in vitro cell
culture systems. These models can better mimic organ systems’
structure, functions, and responses, though they do not mean
maintaining or growing actual organs on a chip. The purpose
of OOC is not to build a whole living organ but to synthesize
minimal functional units that recapitulate tissue- and organ-level
functions (98). The combination of microfabrication, microfluidics,
and iPSC technologies has provided many physiological models
that better mimic human anatomy, functions, and responses
more accurately, as seen in vivo (9, 99). These MPS can
provide compartmentalized chambers that enable culturing and
organizing cellular, extracellular matrices (ECMs), and other
microenvironmental layers within these compartments while still
propagating cellular signals, and sometimes even cells themselves,
to propagate between the compartments through interconnected
fluid paths. Animal models do not always mimic human pregnancy,
particularly parturition (100, 101) and preterm birth induced in
many of these models is not a naturally occurring pathobiological
process (102). To overcome this, microphysiologic systems (OOC
technology platform) has been used to recreate the placenta (103–
108), fetal membrane (90, 96, 109–113), cervix (94, 114), vagina
(115, 116), and blood–brain barrier models (117–120).

Our MPS models of various intrauterine organ systems can
address the limitations of existing models and ultimately accelerate
preclinical drug development and provide reliable data for clinical
trials. MPS models have been in use in other branches of medicine
and are extensively recommended for preclinical trials (121, 122);
however, reproductive medicine and the women’s health field
have not yet advanced in utilizing MPS. Such MPS models can
also accelerate the repurposing of already approved drugs during
pregnancy. These futuristic approaches using the non-animal
models (also referred as NAMs) provide the next best opportunity
for advancing research and filling knowledge gaps in the perinatal

and reproductive health field. The basic design of each MPS model
is that they have a (1) cell culture layer having cell culture chambers
connected with arrays of microchannels and a (2) reservoir layer
having large media reservoirs, where this layer is placed on top of
the cell culture layer to support cell culture for 48–72 h without
the need for media exchange. All the devices fit within a well
of a 6-well plate (Figures 1–4; 92, 94–96, 112, 113) and can be
operated with pipetting. The microfabrication of these MPS devices
from polydimethylsiloxane (PDMS) has been extensively tested and
validated (89, 90, 91, 112, 92, 94–96, 123–127).

Currently available MPS – NAM and
their main directions in the field of
maternal-fetal physiology

Modeling healthy and disease states
using the feto-maternal interface on a
chip

We extensively reported on the use of FMi-OOC (Figure 2)
for modeling various maternal and fetal exposures and using
a four-chamber device. During pregnancy, the fetal membrane
(amniochorion) lines the intrauterine cavity and provides
mechanical, immune, and endocrine support to the growing
fetus (128). The fetal membranes also form one of the FMi
by connecting to the maternal decidua. No MPS models have
recreated this important FMi until now. The FMi-OOC chip has
four concentric circles for cell cultures (96). Each chamber is
250 µm in height, and the width of each chamber was designed
to mimic the thickness of each maternal and fetal layer [decidua,
chorion, and amnion (mesenchyme and epithelium)] as seen in
utero. This design allowed us to test four different cell types in
four separate microenvironments (different culture mediums).
Type IV collagen filled microchannels modeled the basement
membranes and connected the chambers aligned with a media
reservoir. This device contains maternal decidua (DEC) in the
center chamber (green), connected to fetal chorion trophoblast
cells (CTC) (yellow), amnion mesenchymal cells (AMC; pink),
and amnion epithelial cells (AECs; purple) in the outer chamber.
CTC and AMC layers are grown in a semi-3D suspension with
Matrigel and primary amnion membrane-derived collagen to
provide biological context (91, 92, 95, 96). This is the first MPS
device to model the fetal membrane FMi allowing us to recreate
disease phenotypes and assess the role of the fetal inflammatory
response, a major determinant of adverse pregnancies and fetal
morbidities. This device has been utilized to model ascending
infection and inflammation [lipopolysaccharide (LPS) (96) and
Ureaplasma parvum], identify the biological role of fetal-derived
exosomes on labor induction (95), validate the functional role
of drug transport proteins within fetal membrane cells (126),
environmental toxicology studies (92), and conduct a preclinical
trial with pravastatin and rosuvastatin (91). Results from these
studies provide cellular and effluent biomarkers of various
disease states and drug pharmacokinetics (PK), metabolism, and
efficacy. Most importantly, the findings from FMi-OOC studies
on infection-associated inflammatory changes leading to preterm
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FIGURE 1

Choriodecidua interface (CD-OOC). (A) Three-dimensional and cross-sectional view of the two-chamber device. Cross-sectional view showing the
diffusion barrier formation by liquid height difference. A dye-filled device with an outer chamber filled purple and an inner chamber filled green.
(B) Adaptation of the two-chamber OOC to model the CDI. Cartoon showing the cell layers of the CDI along with a schematic depicting cell
location within the OOC. Representative fluorescent images of vimentin + DEC cells (green) and CD45+ leukocytes in the inner chamber (red).
Migratory leukocytes were identified by their CD45 staining (red) within microchannels (white arrows). Chorion cells in the outer chamber were only
stained with DAPI (blue).

birth and exosome-mediated feto-maternal communication,
associated inflammatory changes, and parturition were replicated
physiologically using animal models validating the usefulness
of MPS devices as an alternative to animal models. To note,
physiological validation in animal models has its own limitations,
as they do not mimic human pregnancy and or parturition.

Testing cigarette smoke and dioxin
exposure induced cellular changes on
feto-maternal cells

A two-chamber model of AEC and DEC separated by a
semipermeable membrane was used to recreate FMi. Cells were
treated with cigarette smoke extract (CSE) or dioxin for 48 h. The
same experiments were conducted in transwells for comparison.
Compared to transwell cultures, cells in OOC produced better
membrane permeability regardless of the side of exposure (fetal
vs. maternal). Membrane permeabilization was higher in AECs
directly treated with CSE (1.6-fold) compared to similar treatment
on the decidual side (1.2-fold). Both CSE and dioxin treatment
on the maternal side induced cellular senescence on the fetal
side. This effect was minimal in the transwell system. This
confirmed the hypothesis that maternal oxidative stress (induced
by cigarette smoke) can potentially cause premature aging of
the fetal cells.

Testing exposures by the mother or fetus
and its pathologic impact on fetal cells

Limitations of the two-chamber model, where we cannot
include all the cellular components of the FMi, promoted
us to develop the four-chamber device. FMi-OOC was used
extensively by our lab to report the impact of cigarette smoke and
Cadmium toxicity.

Cigarette smoke causes sterile
inflammation, as seen in non-infectious
inflammatory conditions in preterm birth

Using FMi-OOC, we recreated an environment induced
by cigarette smoke extract (CSE – oxidative stress inducer).
Maternal and fetal CSE exposures induced the following: (1)
time-dependent propagation of cigarette smoke as measured by
nicotine in the media in various cell chambers, (2) cellular
transitions [epithelial mesenchymal transition (EMT)] similar
to that seen in pathologic preterm birth, (3) senescence of
cells induced by oxidative stress, and (4) sterile inflammation
characterized by increased proinflammatory cytokines and reduced
antiinflammatory cytokines. These changes were similar to our
prior reports using the animal models (129), suggesting that MPS
models are ideal for replacing animal models in experimental
reproductive biology.
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FIGURE 2

Feto-maternal interface (FMi-OOC). (A) FMi-OOC mimicking the fetal membrane amniochorion-decidua interface. FMi-OOC contains four circular
chambers separated by arrays of microchannels. The cells are seeded as follows: decidua cells (red), CTCs (yellow), AMCs (green), and AECs (purple).
Integrated media reservoir filled with color dye in each cell culture layer. (B) The width and height of chambers/microchannels. Collagen was
stained with Masson trichome for visualization. (C) Brightfield and fluorescence images showing morphology, cytoskeletal markers (vimentin green;
cytokeratin-18 red), and human leukocyte antigen G (HLA-G) in the chorion.

Cadmium toxicity and fetal outcome

Exposure to environmental chemicals can prematurely trigger
labor-initiating signals at the FMi, leading to spontaneous preterm
birth. Using Cadmium as a model toxicant, we tested the effect
of maternal exposure to Cadmium (Cd) (92). Cd transport
through the FMi and its impact on the cell cycle, cell death, and
inflammation were analyzed. Cd treatment resulted in significant
cell death and a pro-inflammatory environment in the maternal
decidua but had minimal effect on the fetal chorion cells and no
effect in the fetal amnion cells compared to controls. The mother
primarily mediated the inflammatory response and not the fetus.
The maternal response, but lack of fetal response, indicates that Cd-
mediated adverse effects originate from maternal pathophysiology
rather than fetal-derived triggers of preterm labor. This study
demonstrates that the FMi-OOC can indeed predict the response of
FMi upon exposure to chemicals, opening the possibility for using

OOC models for environmental toxin screens (92). Compared
with cigarette smoke exposure described above, these data suggest
that FMi-OOC can determine the differential effects, i.e., the
pathological triggers (pathways and biomarkers) that contribute to
APOs are maternal or fetal driven. This knowledge is critical in
determining intervention strategies.

Extracellular vesicle (exosomes)
mediated communication in response to
toxicant exposure

Maternal and fetal exposure to various pollutants and toxicants
can lead to premature senescence of the feto-maternal FMi tissues
(130–133). These pathological changes prematurely produce
exosomes that cargo cellular damage associated inflammatory
mediators. These exosomes are communication channels
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FIGURE 3

Placenta (PLA-OOC). (A) Schematic of the placenta trophoblast-endothelial interface. PLA-OOC contains three rectangular chambers separated by
arrays of microchannels. (B) Color dye-injected PLA-OOC for easy visualization of each cell culture chamber. (C) Cell culture chambers showing the
width and microchannel length. (D) Media reservoir layer that was aligned on top of the cell loading inlets and outlets. (E) Brightfield image showing
STB and CTB cell barrier (white arrow) formation covering the microchannels. The cell barriers were confirmed to contain tight junction marker
E-cadherin (green) expression confirming their functionality. Additionally, microchannels between the CTB and HUVEC chamber are filled with type I
collagen to recreate the placenta stroma. Collagen was stained with Masson trichome for visualization (blue color, right image). (F) Brightfield and
fluorescence images documents cell morphology, microvilli expression (black arrow), cytoskeletal markers [cytokeratin-7 (CK-7; red); tight junction
marker (E-cadherin; green); and endothelial cell marker (MUC18; green)].

between the mother and the fetus and often cause functional
changes, including labor (131, 133). We tested the feto-maternal
communication using FMi-OOC where exosomes carrying High
mobility group box 1 protein [HMGB1; one of the damages
associated molecular pattern marker (DAMP)] related changes
were tested. Exosomes with HMGB1 is hypothesized to increase
the inflammatory load at the FMi (95). To test this, exosomes
from AECs grown under normal conditions were engineered
to contain HMGB1 by electroporation (eHMGB1). eHMGB1
propagation through FMi was tested using FMi-OOC. We have
reported that eHMGB1 propagated through the fetal cells to the
maternal decidua and increased inflammation [receptor expression
(RAGE and TLR4) and cytokines]. Furthermore, intra-amniotic
injection of eHMGB1 (containing 10 ng) into pregnant CD-1 mice
on embryonic day 17 led to PTB. Injecting carboxyfluorescein
succinimidyl ester (CFSE)-labeled eHMGB1, we determined
in vivo kinetics. We reported that eHMGB1 trafficking resulting
in preterm birth in animal models was also associated with
increased FMi inflammation, such as that we observed in cells of
the FMi-OOC. This study provided in vivo functional validation
of FMi-OOC experiments and strengthened the reliability of
such devices to test physiologic and pathologic systems (95).
Bioengineered microvesicles (particles with higher size than
exosomes) are also ideal for studying biochemical gradients
and compartmentalized responses in in vitro models. Besides
the FMi MPS models described above, other microphysiologic

platforms exist, such as the placenta on a chip. This two-chamber
device that contained two cells types (one from choriocarcinoma
and other HUVEC cells also contained ECM) (105). Variations
of these designs have been used by other investigators (104,
134–138). Some of these models are used for environmental
toxicology trials.

The MPS based on NAMs have notable strengths. MPS models
that can recreate an entire organ can overcome the limitations
of many of the current approaches (2D cultures, explant models,
transwell models, organoids, and animal models). MPS models
require lesser number of cells and media compared to traditional
approaches. Cellular migration, propagation of paracrine factors
(e.g., extracellular vesicles) can be easily studies using MPS
platforms. Creation of a healthy and disease states of an organ can
mimic the state of the organ in vivo and can be used to determine
pathophysiology at different cellular levels in an organ, discover
biomarkers of the pathophysiology, and test efficacy of compounds
that can reinstate the healthy state of the organ.

With all of this said, these MPS are not without limitations.
Although the architecture of the organ can be reproduced in an
in vitro model, they are difficult to manufacture, and miniaturized
cell culture chambers are difficult to operate. PDMS used for
many of the currently used MPS models have been reported to
absorb certain compounds and this may pose a limitation to
study specific secreted products or incorporating these substances
in experimental models. Translational research requires high
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FIGURE 4

Vagina-cervix-decidua: VCD-OOC. (A) An illustration of the anatomy and histology of the female reproductive tract showing the vagina, cervix, and
decidua. The epithelial cells of the vagina are continuous with the ectocervix, transformation zone, and endocervix. Beneath the epithelial layer is
the cervical stromal layer. During term gestation, the fetal membrane, specifically the decidua, which is its outermost layer, lies directly above the
endocervix. (B) Schematic illustration of the VCD-OOC showing the six cell culture chambers filled with color dye in each of the corresponding cell
culture layers. (1) Brightfield microscopy of microchannels connecting the VEC-ECTO chambers; (2) brightfield microscopy image of microchannels
connecting the ENDO-DEC chambers; (3) brightfield image showing the microchannels between the cervical epithelial cell chambers and the MES
chamber filled with Matrigel; and (4) representative SEM image showing the type IV collagen in the microchannels. (C) Representative fluorescence
microscopy images showing intermediate filaments and cell-specific markers [pan-cytokeratin (pan-CK), cytokeratin (CK)-14, CK-18, vimentin,
α-smooth muscle actin (α-SMA), mucin (Muc5a), and type I collagen] of the cells cultured in VCD-OOC. (D) The VCD-OOC device with the
integrated media reservoir filled with a dye in each cell culture layer for visualization.

throughput and large volume of data generation and most academic
research lab settings may depend on commercial sources for their
design and manufacture, prior to conducting any experiment; this
can be cost prohibitive. Low number of cells and media used
may also pose difficulties in terms of having sufficient materials
to conduct several routine lab experiments (e.g., Western blot
analysis). However, many labs have now designed ways to overcome
many of these limitations and certain technological advancements
have helped to reduce the sample volume required to conduct
several lab tasks.

A future for NAMs

Reliability, reproducibility, and translatability are the features
needed to make NAMs part of the research mainstream. As we
have written before, this will require them to perform at a level that
satisfies the needs of investigators (139). Reproducing the features
and function of complex biological systems is an inescapably
daunting task. If the past work of developers is any indicator for
future advances in NAMs, then we should anticipate an equally
awesome evolutionary process. Along that creative timeline, input
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from other stakeholders is crucial. While regulators will remain as
the gatekeepers for releasing end products, conversations among
the stakeholder groups most closely associated with the challenges
confronting NAMs will have relevance for informing and driving
the developmental process. The initial core demographics of
academic scientists, industry, government funders, government
regulators, venture capital, philanthropy, animal research advocacy,
and animal protection, should be joined by patient advocacy
groups, specialty clinicians, ethicists, and other stakeholders
holding significant interests in the promise that NAMs have
for delivering improved healthcare outcomes, increased scientific
accuracy, reduced and/or eliminated reliance on animal use, and
optimized environmental welfare. NAMs are ideal but still there
are limitations to accessing them and conducting experiments
using them. For example, microfluidic and other platforms are
not accessible to several labs and trained personnel to conduct
experiments are also currently lacking. Human primary cells,
cell lines or human iPSCs are also needed for use in these
experimental models. Accessibility or cost associated in accessing
them may also limit several researchers from acquiring these
technologies or using them.
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