221 research outputs found

    Isolation of CFTR and TMEM16A inhibitors from Neorautanenia mitis (A. Rich) Verdcourt: Potential lead compounds for treatment of secretory diarrhea

    Get PDF
    © 2020 Elsevier Ltd A phytochemical study on the root extracts of Neorautanenia mitis, a Nigerian medicinal plant used in the management of diarrhea, led to the isolation of one new and 19 known natural products. These compounds and crude extracts were evaluated for Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Cl− channel and calcium-activated Cl− channel (TMEM16A) inhibitory activities in T84 and Calu-3 cells, respectively. Four compounds namely dolineon, neodulin, pachyrrhizine, and neotenone inhibited cAMP-induced Cl− secretion across T84 cell monolayers with IC50 values of ~0.81 μM, ~2.42 μM, ~2.87 μM, and ~4.66 μM, respectively. Dolineon having the highest inhibitory activity also inhibited a Ca + activated Cl− channel (TMEM16A) with an IC50 value of ~4.38 μM. The in vitro antidiarrheal activity of dolineon was evaluated on cholera toxin (CT) induced chloride secretion in T84 cells, where it inhibited CT-induced chloride secretion by \u3e70% at 100 μM. Dolineon also inhibited CT-induced fluid secretion by ~70% in an in vivo mouse closed loop model at a dose of 16.9 μg/loop. The cytotoxicity of the extracts and compounds was evaluated on KB, Vero and BHK21 cells, dolineon showed low cytotoxicity of \u3e29.6 μM and 57.30 + 6.77 μM against Vero and BHK21 cells, respectively. Our study revealed that several compounds isolated from N. mitis showed antidiarrheal activity. The most active compound dolineon can potentially serve as a lead compound towards the development of CFTR and TMEM16A inhibitors as future therapeutics for secretory diarrhea

    Resolution and identification of scalemic caged xanthones from the leaf extract of Garcinia propinqua having potent cytotoxicities against colon cancer cells

    Get PDF
    A new scalemic 8,8a-dihydro caged xanthone (1) was isolated from the leaf extract of Garcinia propinqua. Five other known natural products, the three caged xanthones (2, 5 and 6) and the two neocaged xanthones, (3 and 4) were also isolated as scalemic mixtures. Their structures were characterized by spectroscopic methods. The enantiomeric ratios (er) of compounds 1-6 ranged from 1:0.7 to 1:0.9. These compounds were also resolved by semipreparative chiral HPLC. The absolute configurations of (+)-2 and (+)-3 were determined by single-crystal X-ray diffraction analysis using Cu Kα radiation while the absolute configurations of the other compounds were determined by comparisons of their ECD spectra. Compounds (-)-4, (+)-4, (-)-5, (+)-5, and (-)-6 showed potent cytotoxicities against a colon cancer cell line HCT116 with IC50 values of 2.60, 7.02, 1.47, 3.37, and 4.14μM, respectively, which were better than the standard control doxorubicin (IC50 9.74μM)

    Essential role of CFTR in PKA-dependent phosphorylation, alkalinization, and hyperpolarization during human dperm capacitation

    Get PDF
    Mammalian sperm require to spend a limited period of time in the female reproductive tract to become competent to fertilize in a process called capacitation. It is well established that HCO3 − is essential for capacitation because it activates the atypical soluble adenylate cyclase ADCY10 leading to cAMP production, and promotes alkalinization of cytoplasm, and membrane hyperpolarization. However, how HCO3 − is transported into the sperm is not well understood. There is evidence that CFTR activity is involved in the human sperm capacitation but how this channel is integrated in the complex signaling cascades associated with this process remains largely unknown. In the present work, we have analyzed the extent to which CFTR regulates different events in human sperm capacitation. We observed that inhibition of CFTR affects HCO3 −-entrance dependent events resulting in lower PKA activity. CFTR inhibition also affected cAMP/PKA-downstream events such as the increase in tyrosine phosphorylation, hyperactivated motility, and acrosome reaction. In addition, we demonstrated for the first time, that CFTR and PKA activity are essential for the regulation of intracellular pH, and membrane potential in human sperm. Addition of permeable cAMP partially recovered all the PKA-dependent events altered in the presence of inh-172 which is consistent with a role of CFTR upstream of PKA activation.Fil: Puga Molina, Lis del Carmen. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Pinto, Nicolás Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Torres Rodríguez, Paulina. Universidad Nacional Autónoma de México; MéxicoFil: Romarowski, Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Vicens Sanchez, Alberto. Universidad Nacional Autónoma de México; MéxicoFil: Visconti, Pablo E.. University of Massachussets; Estados UnidosFil: Darszon, Alberto. Universidad Nacional Autónoma de México; MéxicoFil: Treviño, Claudia L.. Universidad Nacional Autónoma de México; MéxicoFil: Buffone, Mariano Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentin

    Styryllactones from Goniothalamus tamirensis

    Get PDF
    The phytochemical investigation of the twig and leaf extracts of Goniothalamus tamirensis led to the isolation and identification of 15 compounds including three rare previously undescribed styryllactones, goniotamirenones A-C, together with 12 known compounds. (Z)-6-Styryl-5,6-dihydro-2-pyranone and 5-(1-hydroxy-3-phenyl-allyl)-dihydro-furan-2-one are reported here for the first time as previously undescribed natural products. Their structures were elucidated by spectroscopic methods. Goniotamirenone A was synthesized via a [2 + 2] cycloaddition reaction of 6-styrrylpyran-2-one in quantitative yield. The absolute configurations of goniotamirenones B and C were identified from experimental and calculated ECD data, while the absolute configurations of (−)-5-acetoxygoniothalamin, (−)-isoaltholactone, parvistone E, and 5-(1-hydroxy-3-phenyl-allyl)-dihydro-furan-2-one were identified by single-crystal X-ray diffraction analysis using Cu Kα radiation. The absolute configurations of the other related compounds were determined from comparisons of their ECD spectra with relevant compounds reported in the literature. (−)-5-Acetoxygoniothalamin exhibited potent cytotoxicity against the colon cancer cell line (HCT116) with an IC50 value of 8.6 μM which was better than the standard control (doxorubicin, IC50 = 9.7 μM), while (Z)-6-styryl-5,6-dihydro-2-pyranone was less active with an IC50 value of 22.1 μM

    SLC26A9 is a constitutively active, CFTR-regulated anion conductance in human bronchial epithelia

    Get PDF
    Human bronchial epithelial (HBE) cells exhibit constitutive anion secretion that is absent in cells from cystic fibrosis (CF) patients. The identity of this conductance is unknown, but SLC26A9, a member of the SLC26 family of CF transmembrane conductance regulator (CFTR)-interacting transporters, is found in the human airway and exhibits chloride channel behavior. We sought differences in the properties of SLC26A9 and CFTR expressed in HEK 293 (HEK) cells as a fingerprint to identify HBE apical anion conductances. HEK cells expressing SLC26A9 displayed a constitutive chloride current that was inhibited by the CFTR blocker GlyH-101 (71 ± 4%, 50 µM) and exhibited a near-linear current–voltage (I-V) relation during block, while GlyH-101–inhibited wild-type (wt)CFTR exhibited a strong inward-rectified (IR) I-V relation. We tested polarized HBE cells endogenously expressing either wt or ΔF508-CFTR for similar activity. After electrical isolation of the apical membrane using basolateral α-toxin permeabilization, wtCFTR monolayers displayed constitutive chloride currents that were inhibited by GlyH-101 (68 ± 6%) while maintaining a near-linear I-V relation. In the absence of blocker, the addition of forskolin stimulated a current increase having a linear I-V; GlyH-101 blocked 69 ± 7% of the current and shifted the I-V relation IR, consistent with CFTR activation. HEK cells coexpressing SLC26A9 and wtCFTR displayed similar properties, as well as forskolin-stimulated currents that exceeded the sum of those in cells separately expressing SLC26A9 or wtCFTR, and an I-V relation during GlyH-101 inhibition that was moderately IR, indicating that SLC26A9 contributed to the stimulated current. HBE cells from CF patients expressed SLC26A9 mRNA, but no constitutive chloride currents. HEK cells coexpressing SLC26A9 with ΔF508-CFTR also failed to exhibit SLC26A9 current. We conclude that SLC26A9 functions as an anion conductance in the apical membranes of HBE cells, it contributes to transepithelial chloride currents under basal and cAMP/protein kinase A–stimulated conditions, and its activity in HBE cells requires functional CFTR

    Predominant constitutive CFTR conductance in small airways

    Get PDF
    BACKGROUND: The pathological hallmarks of chronic obstructive pulmonary disease (COPD) are inflammation of the small airways (bronchiolitis) and destruction of lung parenchyma (emphysema). These forms of disease arise from chronic prolonged infections, which are usually never present in the normal lung. Despite the fact that primary hygiene and defense of the airways presumably requires a well controlled fluid environment on the surface of the bronchiolar airway, very little is known of the fluid and electrolyte transport properties of airways of less than a few mm diameter. METHODS: We introduce a novel approach to examine some of these properties in a preparation of minimally traumatized porcine bronchioles of about 1 mm diameter by microperfusing the intact bronchiole. RESULTS: In bilateral isotonic NaCl Ringer solutions, the spontaneous transepithelial potential (TEP; lumen to bath) of the bronchiole was small (mean ± sem: -3 ± 1 mV; n = 25), but when gluconate replaced luminal Cl(-), the bionic Cl(- )diffusion potentials (-58 ± 3 mV; n = 25) were as large as -90 mV. TEP diffusion potentials from 2:1 NaCl dilution showed that epithelial Cl(- )permeability was at least 5 times greater than Na(+ )permeability. The anion selectivity sequence was similar to that of CFTR. The bionic TEP became more electronegative with stimulation by luminal forskolin (5 μM)+IBMX (100 μM), ATP (100 μM), or adenosine (100 μM), but not by ionomycin. The TEP was partially inhibited by NPPB (100 μM), GlyH-101* (5–50 μM), and CFTR(Inh)-172* (5 μM). RT-PCR gave identifying products for CFTR, α-, β-, and γ-ENaC and NKCC1. Antibodies to CFTR localized specifically to the epithelial cells lining the lumen of the small airways. CONCLUSION: These results indicate that the small airway of the pig is characterized by a constitutively active Cl(- )conductance that is most likely due to CFTR

    Toxin Mediated Diarrhea in the 21st Century: The Pathophysiology of Intestinal Ion Transport in the Course of ETEC, V. cholerae and Rotavirus Infection

    Get PDF
    An estimated 4 billion episodes of diarrhea occur each year. As a result, 2–3 million children and 0.5–1 million adults succumb to the consequences of this major healthcare concern. The majority of these deaths can be attributed to toxin mediated diarrhea by infectious agents, such as E. coli, V. cholerae or Rotavirus. Our understanding of the pathophysiological processes underlying these infectious diseases has notably improved over the last years. This review will focus on the cellular mechanism of action of the most common enterotoxins and the latest specific therapeutic approaches that have been developed to contain their lethal effects

    Loop diuretics are open-channel blockers of the cystic fibrosis transmembrane conductance regulator with distinct kinetics

    Get PDF
    BACKGROUND AND PURPOSE: Loop diuretics are widely used to inhibit the Na(+), K(+), 2Cl(−) co-transporter, but they also inhibit the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(−) channel. Here, we investigated the mechanism of CFTR inhibition by loop diuretics and explored the effects of chemical structure on channel blockade. EXPERIMENTAL APPROACH: Using the patch-clamp technique, we tested the effects of bumetanide, furosemide, piretanide and xipamide on recombinant wild-type human CFTR. KEY RESULTS: When added to the intracellular solution, loop diuretics inhibited CFTR Cl(−) currents with potency approaching that of glibenclamide, a widely used CFTR blocker with some structural similarity to loop diuretics. To begin to study the kinetics of channel blockade, we examined the time dependence of macroscopic current inhibition following a hyperpolarizing voltage step. Like glibenclamide, piretanide blockade of CFTR was time and voltage dependent. By contrast, furosemide blockade was voltage dependent, but time independent. Consistent with these data, furosemide blocked individual CFTR Cl(−) channels with ‘very fast’ speed and drug-induced blocking events overlapped brief channel closures, whereas piretanide inhibited individual channels with ‘intermediate’ speed and drug-induced blocking events were distinct from channel closures. CONCLUSIONS AND IMPLICATIONS: Structure–activity analysis of the loop diuretics suggests that the phenoxy group present in bumetanide and piretanide, but absent in furosemide and xipamide, might account for the different kinetics of channel block by locking loop diuretics within the intracellular vestibule of the CFTR pore. We conclude that loop diuretics are open-channel blockers of CFTR with distinct kinetics, affected by molecular dimensions and lipophilicity
    corecore