165 research outputs found

    Optimal Portfolio Insurance under Nonlinear Transaction Costs

    Get PDF
    The minimization of the costs related to portfolio insurance is a very important investment strategy. In this article, by adding the transaction costs to the classical minimum cost portfolio insurance (MCPI) problem, we define and study the MCPI under transaction costs (MCPITC) problem as a nonlinear programming (NLP) problem. In this way, the MCPI problem becomes more realistic. Since such NLP problems are commonly solved by heuristics, we use the Beetle Antennae Search (BAS) algorithm to provide a solution to the MCPITC problem. Numerical experiments and computer simulations in real-world data sets confirm that our approach is an excellent alternative to other evolutionary computation algorithms

    Binary Beetle Antennae Search Algorithm for Tangency Portfolio Diversification

    Get PDF
    The tangency portfolio, also known as the market portfolio, is the most efficient portfolio and arises from the intercept point of the Capital Market Line (CML) and the efficient frontier. In this paper, a binary optimal tangency portfolio under cardinality constraint (BOTPCC) problem is defined and studied as a nonlinear programming (NLP) problem. Because such NLP problems are widely approached by heuristic, a binary beetle antennae search algorithm is employed to provide a solution to the BTPSCC problem. Our method proved to be a magnificent substitute to other evolutionary algorithms in real-world datasets, based on numerical applications and computer simulations

    Liposome‐containing mechanoresponsive hydrogels

    Get PDF
    The direct injection of a drug into a joint can relieve osteoarthritic pain for a short period of time. The problem is that the drug will not stay at the allocated location. Therefore, a proof-of-concept in situ is designed forming hydrogel containing liposomes that are covalently linked to the hydrogel network. When the liposomes are filled with a cargo, the formed hydrogel is thus loaded with this cargo, too. Due to the link between the hydrogel and the liposomes, a compression or other mechanical force applied to the hydrogel will rupture the liposomes and release a small percentage of the cargo. Overall, a long-term intra-articular drug release is feasible

    Moxifloxacin Liposomes:Effect of Liposome Preparation Method on Physicochemical Properties and Antimicrobial Activity against Staphylococcus epidermidis

    Get PDF
    The aim of this study was the development of optimal sustained-release moxifloxacin (MOX)-loaded liposomes as intraocular therapeutics of endophthalmitis. Two methods were compared for the preparation of MOX liposomes; the dehydration–rehydration (DRV) method and the active loading method (AL). Numerous lipid-membrane compositions were studied to determine the potential effect on MOX loading and retention in liposomes. MOX and phospholipid contents were measured by HPLC and a colorimetric assay for phospholipids, respectively. Vesicle size distribution and surface charge were measured by DLS, and morphology was evaluated by cryo-TEM. The AL method conferred liposomes with higher MOX encapsulation compared to the DRV method for all the lipid compositions used. Cryo-TEM showed that both liposome types had round vesicular structure and size around 100–150 nm, while a granular texture was evident in the entrapped aqueous compartments of most AL liposomes, but substantially less in DRV liposomes; X-ray diffraction analysis demonstrated slight crystallinity in AL liposomes, especially the ones with highest MOX encapsulation. AL liposomes retained MOX for significantly longer time periods compared to DRVs. Lipid composition did not affect MOX release from DRV liposomes but significantly altered drug loading/release in AL liposomes. Interestingly, AL liposomes demonstrated substantially higher antimicrobial potential towards S. epidermidis growth and biofilm susceptibility compared to corresponding DRV liposomes, indicating the importance of MOX retention in liposomes on their activity. In conclusion, the liposome preparation method/type determines the rate of MOX release from liposomes and modulates their antimicrobial potential, a finding that deserves further in vitro and in vivo exploitation

    Solving quaternion nonsymmetric algebraic Riccati equations through zeroing neural networks

    Get PDF
    Many variations of the algebraic Riccati equation (ARE) have been used to study nonlinear system stability in the control domain in great detail. Taking the quaternion nonsymmetric ARE (QNARE) as a generalized version of ARE, the time-varying QNARE (TQNARE) is introduced. This brings us to the main objective of this work: finding the TQNARE solution. The zeroing neural network (ZNN) technique, which has demonstrated a high degree of effectiveness in handling time-varying problems, is used to do this. Specifically, the TQNARE can be solved using the high order ZNN (HZNN) design, which is a member of the family of ZNN models that correlate to hyperpower iterative techniques. As a result, a novel HZNN model, called HZ-QNARE, is presented for solving the TQNARE. The model functions fairly well, as demonstrated by two simulation tests. Additionally, the results demonstrated that, while both approaches function remarkably well, the HZNN architecture works better than the ZNN architecture

    A novel quaternion linear matrix equation solver through zeroing neural networks with applications to acoustic source tracking

    Get PDF
    Due to its significance in science and engineering, time-varying linear matrix equation (LME) problems have received a lot of attention from scholars. It is for this reason that the issue of finding the minimum-norm least-squares solution of the time-varying quaternion LME (ML-TQ-LME) is addressed in this study. This is accomplished using the zeroing neural network (ZNN) technique, which has achieved considerable success in tackling time-varying issues. In light of that, two new ZNN models are introduced to solve the ML-TQ-LME problem for time-varying quaternion matrices of arbitrary dimension. Two simulation experiments and two practical acoustic source tracking applications show that the models function superbly

    Zeroing neural networks for computing quaternion linear matrix equation with application to color restoration of images

    Get PDF
    The importance of quaternions in a variety of fields, such as physics, engineering and computer science, renders the effective solution of the time-varying quaternion matrix linear equation (TV-QLME) an equally important and interesting task. Zeroing neural networks (ZNN) have seen great success in solving TV problems in the real and complex domains, while quaternions and matrices of quaternions may be readily represented as either a complex or a real matrix, of magnified size. On that account, three new ZNN models are developed and the TV-QLME is solved directly in the quaternion domain as well as indirectly in the complex and real domains for matrices of arbitrary dimension. The models perform admirably in four simulation experiments and two practical applications concerning color restoration of images

    Synthesis, self-assembly, and immunological activity of α-galactose-functionalized dendron–lipid amphiphiles

    Get PDF
    Nanoassemblies presenting multivalent displays of biologically active carbohydrates are of significant interest for a wide array of biomedical applications ranging from drug delivery to immunotherapy. In this study, glycodendron–lipid hybrids were developed as a new and tunable class of dendritic amphiphiles. A modular synthesis was used to prepare dendron–lipid hybrids comprising distearylglycerol and 0 through 4th generation polyester dendrons with peripheral protected amines. Following deprotection of the amines, an isothiocyanate derivative of C-linked α-galactose (α-Gal) was conjugated to the dendron peripheries, affording amphiphiles with 1 to 16 α-Gal moieties. Self-assembly in water through a solvent exchange process resulted in vesicles for the 0 through 2nd generation systems and micelles for the 3rd and 4th generation systems. The critical aggregation concentrations decreased with increasing dendron generation, suggesting that the effects of increasing molar mass dominated over the effects of increasing the hydrophilic weight fraction. The binding of the assemblies to Griffonia simplicifolia Lectin I (GSL 1), a protein with specificity for α-Gal was studied by quantifying the binding of fluorescently labeled assemblies to GSL 1-coated beads. It was found that binding was enhanced for amphiphiles containing higher generation dendrons. Despite their substantial structural differences with the natural ligands for the CD1d receptor, the glycodendron–lipid hybrids were capable of stimulating invariant natural killer T (iNKT) cells, a class of innate-like T cells that recognize lipid and glycolipid antigens presented by CD1d and that are implicated in a wide range of diseases and conditions including but not limited to infectious diseases, diabetes and cancer

    Nanoparticle-based bioactive agent release systems for bone and cartilage tissue engineering

    Get PDF
    The inability to deliver bioactive agents locally in a transient but sustained manner is one of the challenges on the development of bio-functionalized scaffolds for tissue engineering (TE) and regenerative medicine. The mode of release is especially relevant when the bioactive agent is a growth factor (GF), because the dose and the spatiotemporal release of such agents at the site of injury are crucial to achieve a successful outcome. Strategies that combine scaffolds and drug delivery systems have the potential to provide more effective tissue regeneration relative to current therapies. Nanoparticles (NPs) can protect the bioactive agents, control its profile, decrease the occurrence and severity of side effects and deliver the bioactive agent to the target cells maximizing its effect. Scaffolds containing NPs loaded with bioactive agents can be used for their local delivery, enabling site-specific pharmacological effects such as the induction of cell proliferation and differentiation, and, consequently, neo-tissue formation. This review aims to describe the concept of combining NPs with scaffolds, and the current efforts aiming to develop highly multi-functional bioactive agent release systems, with the emphasis on their application in TE of connective tissues.POLARIS (REGPOT-CT2012-316331-POLARIS), RL3 – TECT – NORTE-01-0124-FEDER-000020, co-financed by North Portugal Regional Operational Programme (ON.2 – O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF), the OsteoGraphy (PTDC/EME-MFE/2008) and MaxBone (PTDC/SAU-ENB/115179/2009) project

    Lipid nanocarriers loaded with natural compounds: Potential new therapies for age related neurodegenerative diseases?

    Get PDF
    Article in pressAge related neurodegenerative disorders (ARND) are presented as the most debilitating and challenging diseases associated with the central nervous system. Despite the advent of active molecules with a positive role on neurodegenerative mechanisms, many of the current therapeutic strategies remain ineffective in treating or preventing ARND. Lipid nanocarriers have emerged as efficient delivery systems with the capability to cross biological barriers, especially the blood brain barrier (BBB). Also, when associated to natural compounds, lipid nanocarriers have demonstrated to be an interesting alternative to ARND therapies with multiple beneficial effects. This comprehensive review focus on state-of-the-art lipid based nanocarriers for the delivery of natural compounds targeting neurodegeneration. A critical analysis of published reports will be also provided giving indications to researchers about the most promising ARND nanotherapy strategies.Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UID/FIS/04650/2013. Marlene LĂșcio acknowledges the exploratory project funded by FCT with the reference IF/00498/2012. Telma Soares acknowledges COMPETE 2020 “Programa Operacional Competitividade e internacionalização”info:eu-repo/semantics/publishedVersio
    • 

    corecore