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Abstract: The tangency portfolio, also known as the market portfolio, is the most efficient portfolio and arises 
from the intercept point of the Capital Market Line (CML) and the efficient frontier. In this paper, a binary optimal 
tangency portfolio under cardinality constraint (BOTPCC) problem is defined and studied as a nonlinear 
programming (NLP) problem. Because such NLP problems are widely approached by heuristic, a binary beetle 
antennae search algorithm is employed to provide a solution to the BTPSCC problem. Our method proved to be a 
magnificent substitute to other evolutionary algorithms in real-world datasets, based on numerical applications and 
computer simulations. 
Keywords: Binary beetle antennae search algorithm; Tangency Portfolio; Nonlinear programming; Binary 
optimization. 

 
 
1. Introduction 

 
Portfolio management is crucial when making financial decisions. Option replication, risk management, 

transaction costs, insurance costs, and other popular financial fields can be easily managed employing modern 
optimization techniques, such as genetic algorithms [1], cutting planes and non-differential optimization methods 
[2], conic programming [3], branch and bound method [4], Riesz-space theory [5, 6] etc. For instance, the problem 
of finding the minimum-cost insured portfolio is approached by the Riesz space theory in [5, 6]. Therein, it is 
presented that if the asset span is a lattice-subspace, a portfolio can be built that replicates the desired payoff in a 
subset of states. The problem of finding the optimal mean-variance portfolio is approached by genetic algorithms 
in [1], and memetic meta-heuristics in [7]. The model in [1] is defined as mixed-integer nonlinear programming 
(NLP) problem, while the model in [7] is defined as time-varying NLP problem, and their performance in large 
scale problems is investigated systematically for both. 

In this paper, a binary optimal tangency portfolio under cardinality constraint (BOTPCC) problem is defined 
and studied as a NLP problem. Note that the tangency portfolio, also known as the market portfolio, is the most 
efficient portfolio and arises from the intercept point of the Capital Market Line and the efficient frontier. Because 
such NLP problems are widely approached by heuristic, a binary beetle antennae search algorithm (BBAS), which 
is introduced in [8], is employed to provide a solution to the BTPSCC problem. Generally, the beetle antennae 
search is a memetic meta-heuristic optimization algorithm and has been employed broadly in various scientific 
fields in the last few years (see [9-17]). For example, inline with beetle antennae search (BAS) and enhanced 
contract net protocol, an assignment framework for fog computing networks is presented in [10]. In this manner, 
the hard task rapidly and successfully offload the assignment to fog nodes is achieved. Moreover, based on BAS 
a soft-sensor model for optimizing the Elman neural network is presented in [12]. As a result, the neural network's 
prediction accuracy increases, and real-time control of the Polyvinyl chloride polymerization process is achieved. 

The important points to this work can be summed up as follows:   
1) we introduce and investigate the BOTPCC problem as a NLP problem, 
2) we state the conversion of BBAS the enables it to manage constrained optimization problems, 
3) we present comparison between BBAS, the binary bat algorithm (BBA) of [18], the binary genetic algorithm 

(BGA) of [19] and the binary particle swarm optimization under V4 function (VPSO) of [20] on a NLP problem 
in the field of finance. 

The paper is structured as follows. Section 2 introduces and analyses the BOTPCC problem. Furthermore, a 
properly converted meta-heuristic algorithm addresses the BOTPCC optimization problem. Section 3 includes 
three applications which use real-world data and examines the performance of BBAS against the BBA, BGA and 
VPSO in different and relatively small portfolios setups. Last, in section 4, the concluding comments are presented. 

44

https://doi.org/10.32732/jmo.2021.13.1.44
Journal of Modeling and Optimization 2021;13(1):44-50



 

 
 

2. Binary optimal tangency portfolio under cardinality constraint 
 
According to one of the core findings of Modern Portfolio Theory, investors would want to keep as many 

different assets as possible in ideal markets with no restrictions on short selling and limitless trading with no 
transaction costs. In reality, however, this situation is unsustainable, since the sum of transaction costs that would 
be charged for a large number of small stocks will significantly increase the overall cost. Furthermore, managing 
portfolios with a large number of different assets can be time-consuming, so investors tend to prefer portfolios 
with a smaller number of different assets [21]. So, during a portfolio selection process a significant consideration 
is that much of a portfolio's risk diversification can be accomplished with a relatively limited, but well-chosen 
collection of assets. As a consequence, the critical question of deciding the required weight for an asset is 
inextricably connected to the question of whether or not to include the asset in the first place [22]. 

 
2.1 Definition of the BOTPCC problem 

A portfolio investment is a collection of securities and other assets put together to meet a set of objectives. 
Portfolios that are on the Capital Market Line (CML) are always favoured by investors who use mean-variance 
analysis to maximize their expected return for a given level of variance risk. The most effective portfolio, known 
as the tangency portfolio, is the intersection point of the CML and the efficient frontier. Our approach to the 
BOTPCC problem is similar to the tangency portfolio optimization presented in [22]. 

According to Sharpe Ratio [23], any portfolio with one risk-free asset and one or more risky assets would have 
a linear relationship between its expected return 𝑟𝑟𝑝𝑝 and its risk 𝜎𝜎𝑝𝑝. This can be formulated as follows:  

 
 𝑟𝑟𝑝𝑝 = 𝑟𝑟𝑓𝑓 + 𝑆𝑆𝑅𝑅𝑝𝑝𝜎𝜎𝑝𝑝, (1) 

 
where 𝑟𝑟𝑓𝑓 is the risk-free asset's return and 𝑆𝑆𝑅𝑅𝑝𝑝 is the risk premium per unit of risk (i.e. the portfolio's Sharpe Ratio). 
Considering the usual hypothesis on capital markets with many risky and one risk-free asset, the endowment of a 
rational risk averse investor will be split and then a percentage 𝛽𝛽 will be invested in the risk-free asset and the rest 
(1 − 𝛽𝛽) in some portfolio of risky assets 𝑝𝑝, where the composition of 𝑝𝑝 decides 𝑆𝑆𝑅𝑅𝑝𝑝. Assume the market space 
𝑋𝑋 = [𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛] ∈ ℝ𝑛𝑛 which comprises of the prices of 𝑛𝑛 assets, the investor will select the weights 𝑝𝑝𝑖𝑖 , for the 
assets 𝑖𝑖 = 1,2, … ,𝑛𝑛 , within the portfolio 𝑝𝑝 = [𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑛𝑛] ∈ ℝ𝑛𝑛  to optimize 𝑆𝑆𝑅𝑅𝑝𝑝 . It's worth noting that the 
investor's risk aversion is reflected in 𝛽𝛽, and that every investor's 𝑝𝑝𝑖𝑖  should be the same. As a consequence, the 
portfolio 𝑝𝑝 (also known as tangency portfolio) can be calculated without taking into account the investor's risk 
aversion or utility function. 

Furthermore, the constant number 𝐾𝐾 implies the number of assets the investor can hold and, hence, to avoid 
over-diversification. To mathematically express the cardinality constraint, the binary variables 𝜅𝜅1, 𝜅𝜅2, … , 𝜅𝜅𝑛𝑛, which 
indicate the assets included in the portfolio, are considered. These variables may have a value of 0 or 1, with 𝜅𝜅𝑖𝑖 =
1 indicating that the investor holds the asset 𝑖𝑖 and 𝜅𝜅𝑖𝑖 = 0 indicating that the investor does not hold the asset. 

Based on the aforementioned analysis, if there exists a market 𝑋𝑋 of 𝑛𝑛 assets, where only 𝐾𝐾 of them must be 
contained in the portfolio 𝑝𝑝, the optimal tangency portfolio under cardinality constraint (OTPCC) problem can be 
written as follows:  

    
max𝑝𝑝 𝑆𝑆𝑅𝑅𝑝𝑝 = 𝑟𝑟𝑝𝑝−𝑟𝑟𝑓𝑓

𝜎𝜎𝑝𝑝
    (2) 

subject to 𝑟𝑟𝑝𝑝 = ∑𝑛𝑛
𝑖𝑖=1 𝑝𝑝𝑖𝑖𝑟𝑟𝑖𝑖                                                    (3) 

 𝜎𝜎𝑝𝑝 = �∑𝑛𝑛
𝑖𝑖=1 ∑𝑛𝑛

𝑗𝑗=1 𝑝𝑝𝑖𝑖𝑝𝑝𝑗𝑗𝜎𝜎𝑖𝑖𝑗𝑗                          (4) 

 ∑𝑛𝑛
𝑖𝑖=1 𝜅𝜅𝑖𝑖 ≤ 𝐾𝐾, ∀𝑖𝑖,                                                    (5) 

 
where 𝜎𝜎𝑖𝑖𝑗𝑗 implies the covariance between the expected returns of assets 𝑖𝑖 and 𝑗𝑗 and 𝑟𝑟𝑖𝑖 implies the expected return 
of asset 𝑖𝑖. 

To convert the OTPCC to a binary optimization problem as well as to be more realistic, the following changes 
are employed. Setting 𝑟𝑟 = [𝑟𝑟1, 𝑟𝑟2, … , 𝑟𝑟𝑛𝑛] ∈ ℝ𝑛𝑛  the expected return of all the assets of the market 𝑋𝑋  and 𝐶𝐶  the 
covariance matrix of the risky assets of the market 𝑋𝑋, we have 𝑟𝑟𝑝𝑝 = 𝑝𝑝T𝑟𝑟 and 𝜎𝜎𝑝𝑝 = �𝑝𝑝T𝐶𝐶𝑝𝑝. Note that both the risky 
and risk-free assets are contained in the market 𝑋𝑋. But in reality, there is no such thing as a risk-free asset when it 
comes to investing because nothing can be guaranteed 100%. For that reason, the risk-free assets in our model are 
considered to be the market's assets with a variance (risk) bellow a small constant number 𝑧𝑧. Thus, setting 𝐻𝐻 =
[ℎ1, ℎ2, … , ℎ𝑛𝑛], where ℎ𝑖𝑖 = 1, if Var[ℎ𝑖𝑖] < 𝑧𝑧, and ℎ𝑖𝑖 = 0, otherwise, we can consider 𝑟𝑟𝑓𝑓 = 𝑝𝑝T(𝐻𝐻 ⊙ 𝑟𝑟). Note that 
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Var[𝑌𝑌] signifies the variance of 𝑌𝑌 and ⊙ signifies the Hadamard (or element-wise) product. To calculate the 
expected return, the variance and the covariance matrix of the market 𝑋𝑋, we rely on the past values (or delays). 
Thus, the constant number 𝑑𝑑 ∈ ℕ represents the delays. Also note that each asset price 𝑥𝑥𝑖𝑖 is normalized based on 
its 𝑑𝑑 in number delays. 

Based on the aforementioned analysis, the BOTPCC problem can be formulated in the following NLP form: 
     

max𝑝𝑝 𝑝𝑝T(𝑟𝑟−𝐻𝐻⊙𝑟𝑟)
�𝑝𝑝T𝐶𝐶𝑝𝑝

                    (6) 

subject to 𝑝𝑝T𝐻𝐻 > 0                                     (7) 

 ∑𝑛𝑛
𝑖𝑖=1 𝜅𝜅𝑖𝑖 ≤ 𝐾𝐾                                   (8) 

 𝑝𝑝𝑖𝑖 = {0,1},   ∀𝑖𝑖.                                       (9) 
 
2.2 BBAS approach on the BOTPCC problem 

Beetle tracks food based on the intensity of the smell it detects on its two antennae. BAS is a meta-heuristic 
optimization algorithm that mimics the searching behavior of a beetle to find the optimal solution to the problem 
[24]. A binary version of BAS, called BBAS, introduced in [8]. Because BBAS is only applicable to unconstrained 
optimization, some supplementary processes must be employed to hold solutions within the feasible range. To 
achieve this, our modified version of BBAS embodies the penalty function method [25]. 

Penalty functions work in a series of sequences, each time changing a set of penalty parameters and starting a 
new one with the previous one. The following penalty function is maximized during the construction of any 
sequence:  

 
 𝐹𝐹(𝑥𝑥,𝑅𝑅) = 𝑓𝑓(𝑥𝑥) − 𝑔𝑔(𝑅𝑅, 𝑞𝑞(𝑥𝑥)), (10) 

 
where 𝑓𝑓(𝑥𝑥) is the objective function and 𝑔𝑔(𝑅𝑅, 𝑞𝑞(𝑥𝑥)) is the penalty term, with 𝑅𝑅 being a set of penalty parameters 
and 𝑞𝑞(𝑥𝑥) being the inequality constraint function. Generally, the main advantage of this method is that it can satisfy 
any convex or nonconvex constraint. 

In this approach, the penalty method employed incorporates the bracket operator 〈⋅〉 with 〈𝑚𝑚〉 = 0, if 𝑚𝑚 is 
positive, otherwise 〈𝑚𝑚〉 = 𝑚𝑚. Mainly, this operator is employed to manage the constraints on inequality. Hence, 
employing the following penalty term:  

 
 𝑔𝑔(𝑅𝑅, 𝑞𝑞(𝑥𝑥)) = 𝑅𝑅〈𝑞𝑞𝑗𝑗(𝑥𝑥)〉2, (11) 

 
for each 𝑗𝑗, where 𝑞𝑞𝑗𝑗(𝑥𝑥) denotes the 𝑗𝑗-th inequality constraint function. Note that because the infeasible points are 
substituted with a negative value, the bracket operator is an external penalty method. In this way, this approach 
assists BBAS to manipulate convex or nonconvex constraints more accurately. The BBAS algorithm's principle, 
however, is similar to that defined in [8]. 

Based on the aforementioned analysis, the penalty function for the BOTPCC problem, written with MATLAB 
routines, is the following:  

 
 𝐹𝐹(𝑝𝑝,𝑅𝑅) = 𝑓𝑓(𝑝𝑝) − 𝑅𝑅2(sum(𝑝𝑝 > 0) > 𝐾𝐾 + (𝑝𝑝T𝐻𝐻) == 0), (12) 

 
where 𝑓𝑓(𝑝𝑝) is (6) and sum(⋅) is the MATLAB routine that returns the sum of the elements of its input. The next 
algorithm is the modified BBAS algorithm, which is capable to solve the BOTPCC problem. Therein, the ones(⋅), 
round(⋅), rands(⋅) denote standard MATLAB routines. 
 

Algorithm 1 BBAS algorithm for the BOTPCC problem. 
Input: Set as objective function f(p) the (6) and as penalty function F(p,R) the (12).     
1: Set the initial candidate portfolio p_best=ones(n,1) and j=0. 
2: While 𝑗𝑗 < 𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚  
3:     Set 𝑣𝑣 =round(rands(𝑛𝑛, 1))   
4:     Set the right antennae of the beetle 𝑎𝑎𝑟𝑟 = 𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑣𝑣 and the left antennae 𝑎𝑎𝑙𝑙 = 𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑣𝑣 
5:     Set 𝑎𝑎𝑟𝑟(𝑎𝑎𝑟𝑟 > 1) = 1, 𝑎𝑎𝑟𝑟(𝑎𝑎𝑟𝑟 < 0) = 0, 𝑎𝑎𝑙𝑙(𝑎𝑎𝑙𝑙 > 1) = 1 and 𝑎𝑎𝑙𝑙(𝑎𝑎𝑙𝑙 < 0) = 0 
6:     if 𝐹𝐹(𝑎𝑎𝑟𝑟) > 𝐹𝐹(𝑎𝑎𝑙𝑙) then 
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7:         Set 𝑝𝑝 = 𝑎𝑎𝑟𝑟  
8:     else 
9:         Set 𝑝𝑝 = 𝑎𝑎𝑙𝑙  
10:    end if 
11:    if 𝐹𝐹(𝑝𝑝) > 𝐹𝐹(𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) then 
12:       Set 𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑝𝑝 
13:    end if 
14: Set 𝑗𝑗 = 𝑗𝑗 + 1 
15: end while 
16: Set 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑓𝑓(𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) 
Output: 𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. 

 
3. Applications 

 
This section examines and compares the performance of BBAS against the performance of state-of-the-art 

methods such as BBA, BGA and VPSO on the BOTPCC problem. The data used are the daily close prices of the 
stocks contained in Tab. 1. Note that Tab. 1 contains the stocks' ticker symbols and it is divided into 3 blocks. 
Furthermore, in all numerical examples as well as in all the meta-heuristic algorithms employed in this section, 
we have set the penalty parameter 𝑅𝑅 = 1𝑒𝑒5 and the maximum iterations to 1000, while the population size of 
BBA, BGA and VPSO has been set to 30. Also, the delays number has been set to 𝑑𝑑 = 50 and the variance (risk) 
number for finding the risk-free assets has been set to 𝑧𝑧 = 2𝑒𝑒 − 3. 

 
Table 1. Market stocks 

AMGN AUY BMY BSX 
CRM CRWD FB GE 
JKS JNJ KO MSFT 
MU NET NFLX NVDA 

 
3.1 Application in 8 stocks market 

In this application, we consider a market 𝑋𝑋 = [𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥8], where 𝑋𝑋 contains the daily close prices of the 8 
stocks included in the first block of Tab. 1. For the time-period 5/5/2020 to 10/9/2020, there exist 49 observations. 
With the cardinality number being set to 𝐾𝐾 = 4, the optimal portfolio 𝑝𝑝 consists of no more than four stocks, at 
least one of which is risk-free. Thus, we solve the BOTPCC problem for each one of these 49 observations with 
the BBAS, BBA, BGA and VPSO. The results are presented in Fig. 1. 
 

   
(a) Risk-free return of Portfolios. (b) (6) Value of Portfolios. (c) Time-period average of (6). 

Figure 1. The risk-free return, the (6) value and the time-period average of (6) for a market consisting of 8 stocks 
in application 3.1. 
 
3.2 Application in 12 stocks market 

For the second application, we add another 4 stocks in the market of the previous application. That is, we 
consider a market 𝑋𝑋 = [𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥12], where 𝑋𝑋 contains the daily close prices of the 12 stocks included in the 
first and second blocks of Tab. 1. As stated before, for the time-period 5/5/2020 to 10/9/2020, there exist 49 
observations. With the cardinality number being set to 𝐾𝐾 = 6, the optimal portfolio 𝑝𝑝 consists of no more than six 
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stocks, at least one of which is risk-free. Hence, the BOTPCC problem is solved for each one of these 49 
observations with the BBAS, BBA, BGA and VPSO. The results are presented in Fig. 2. 
 

     
(a) Risk-free return of Portfolios. (b) (6) Value of Portfolios. (c) Time-period average of (6). 

Figure 2. The risk-free return, the (6) value and the time-period average of (6) for a market consisting of 8 stocks 
in application 3.2. 
 
3.3 Application in 16 stocks market 

For the third application, we add another 4 stocks in the market of the second application. Hence, we consider 
a market 𝑋𝑋 = [𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥16], where 𝑋𝑋 contains the daily close prices of the 16 stocks included in all the blocks 
of Tab. 1. As previously stated, for the time-period 5/5/2020 to 10/9/2020, there exist 49 observations. With the 
cardinality number being set to 𝐾𝐾 = 8, the optimal portfolio 𝑝𝑝 consists of no more than eight stocks, at least one 
of which is risk-free. So, the BOTPCC problem is approached with the BBAS, BBA, BGA and VPSO for each 
one of these 49 observations. The results are presented in Fig. 3. 
 

   
(a) Risk-free return of Portfolios. (b) (6) Value of Portfolios. (c) Time-period average of (6). 

Figure 3. The risk-free return, the (6) value and the time-period average of (6) for a market consisting of 8 stocks 
in application 3.3. 
 
3.4 Analysis of applications results 

The three applications in this section solved the BOTPCC problem for the time-period 5/5/2020 to 10/9/2020 
and for a market consisting of 8, 12 and 16 stocks. Figs.1-3 depict 49 consecutive BOTPCC problems approached 
with BBAS, BBA, BGA, and VPSO. 

On the one hand, Figs.1a, 2a, 3a show the return of the risk-free asset included in the portfolios under a market 
consisting of 8, 12, 16 stocks, respectively. Therein, it is observable that the returns of the risk-free assets of each 
portfolio are not identical. This implies that the optimal portfolios generated by BBAS, BBA, BGA, and VPSO 
are all different. Figs.1b, 2b, 3b show the (6) value, where (6) represents the 𝑆𝑆𝑅𝑅𝑝𝑝. Therein, it is observable that the 
𝑆𝑆𝑅𝑅𝑝𝑝 in applications 3.1 and 3.2 is identical for every optimal portfolio generated by BBAS, BBA, BGA, and 
VPSO, while in application 3.3 optimal portfolio generated by BBAS, BBA, BGA, and VPSO are not identical. 
Fig. 3b results imply that the market size affects the performances of BBAS, BBA, BGA, and VPSO. Figs.1c, 2c, 
3c show the time-period average of 𝑆𝑆𝑅𝑅𝑝𝑝 . It is observable, therein, that the time-period average of 𝑆𝑆𝑅𝑅𝑝𝑝  in 
applications 3.1 and 3.2 is identical for every optimal portfolio generated by BBAS, BBA, BGA, and VPSO, while 
in application 3.3 optimal portfolio generated by BBAS, BBA, BGA, and VPSO are not identical. Fig. 3c results 
imply that the BBA produces slightly more efficient optimal portfolios than the BBAS, BGA, and VPSO, while 
BBAS produces the least efficient optimal portfolios. 

On the other hand, Tab. 2 contains the average time consumption required from BBAS, BBA, BGA, and VPSO 
to produce 49 consecutive optimal portfolios for the BOTPCC problems in applications 3.1, 3.2 and 3.3. It is 
observable, therein, that BBAS is by far the fastest algorithm. More precisely, BBAS is almost 10 times faster than 
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the second fastest VPSO. Furthermore, VPSO and BBA have almost the same average time consumption, while 
BGA is the slowest. 

The general conclusion arising from the aforementioned analysis is that BBAS worked excellently and 
efficiently in solving the BOTPCC problem. When compared to BBA, BGA, and VPSO, the average time 
consumption of BBAS is by far the lowest, but its accuracy suffers more than BBA, BGA, and VPSO as the market 
dimension increases. 
 

Table  2. Applications 3.1, 3.2 and 3.3 average time consumption 
Market BBAS BBA BGA VPSO 
8 Stocks 1.1𝑠𝑠 9.2𝑠𝑠 31.5𝑠𝑠 8.7𝑠𝑠 

12 Stocks 1.13𝑠𝑠 10.1𝑠𝑠 33𝑠𝑠 9.4𝑠𝑠 
16 Stocks 1.15𝑠𝑠 10.7𝑠𝑠 33.5𝑠𝑠 9.9𝑠𝑠 

 
4. Conclusion 

 
The BOTPCC problem is presented in this paper as a NLP financial problem. A properly modified BBAS 

method is used to solve the BOTPCC problem, and its effectiveness has been demonstrated in three applications 
with different market dimensions. BBAS was also compared to BBA, BGA, and VPSO, which are all popular 
meta-heuristics methods. We deduced that the BBAS approach offers such a solution to the BOTPCC problem, 
which makes it a highly competitive alternative to BBA, BGA, and VPSO, based on our applications. The results 
of the applications show that the presented method is reliable in three market formations on real-world data. 
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