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Abstract: The minimization of the costs related to portfolio insurance is a very important investment strategy. In 
this article, by adding the transaction costs to the classical minimum cost portfolio insurance (MCPI) problem, we 
define and study the MCPI under transaction costs (MCPITC) problem as a nonlinear programming (NLP) 
problem. In this way, the MCPI problem becomes more realistic. Since such NLP problems are commonly solved 
by heuristics, we use the Beetle Antennae Search (BAS) algorithm to provide a solution to the MCPITC problem. 
Numerical experiments and computer simulations in real-world data sets confirm that our approach is an excellent 
alternative to other evolutionary computation algorithms. 
Keywords: Portfolio insurance; Transaction costs; Nonlinear programming. 

 
 
1. Introduction 

 
Investment costs and fees can have a significant effect on the average returns on portfolios, particularly over 

the longer term. Paying lower costs means that more return on your investment can flow to you, allowing you to 
reinvest more money and compound it into the future. Consequently, minimizing fees and costs form a crucial 
focus of the strategy of each investor. For example, a Markowitz-based portfolio selection with minimum 
transaction lots, cardinality constraints and regarding sector capitalization problem is presented in [1]. To solve 
the mixed-integer nonlinear programming (NP-Hard) problem therein, a corresponding genetic algorithm is 
utilized. In [2], the authors develop and examine a mixed-method, integrated qualitative and quantitative portfolio 
selection model, applied to a “tritium extraction facility” project concept. The model therein was developed by 
building on an existing analytical hierarchy process theory using statistical principles and was successfully applied 
to a nuclear tritium extraction facility case study. 

In this paper, we define and study the minimum-cost portfolio insurance (MCPI) problem as a two-period model. 
The dominant financial problem here is the MCPI under transaction costs (MCPITC) problem, which is resulting 
from the combination of the MCPI problem and the portfolio selection under transaction costs (PSTC) problem. 
The MCPITC is an NLP problem, we approach it with an altered acceptation of the Beetle Antennae Search (BAS) 
algorithm and we compare the results with the results of some of the best evolutionary computation algorithms at 
present. These algorithms are the Shuffled Frog Leaping Algorithm (SFLA) from [3], the standard Firefly 
Algorithm (FA) from [4] and the Genetic Algorithm (GA) MATLAB function. Note that we apply our modified 
version of BAS in a MATLAB environment. 

Beetle Antennae Search is a nature inspired algorithm that is competent of efficient global optimization and has 
been extensively used in several scientific fields in recent years (see [5-9]). For example, in [7], a constrained 
portfolio optimization problem is tackled by an altered version of BAS, named Quantum Beetle Antennae Search 
(QBAS). Therein, the authors carved BAS into the quantum realm and used quantum mechanics to formulate 
QBAS, as quantum computing outsmart traditional computing in efficiency and speed. In [9], by combining a back 
propagation neural network (BPNN) and BAS, an intelligent technique was presented for predicting the 
unconfined compressive strength (UCS) of the coalcrete. More precisely, the BPNN's architecture was initially 
tuned by BAS, and afterwards, the optimized BPNN-BAS model was used for nonlinear relationship modeling. 
Note that BAS is directly applicable only to unconstrained optimization. Inhere, our modified version of BAS 
keeps the solutions in the feasible region by using the penalty function method. In this way, BAS is able to manage 
convex or nonconvex constraints more effectively. Generally, the advantages of BAS are that it is less time 
consuming than the previously mentioned evolutionary algorithms, with akin efficacy. 

The main contributions of this paper can be summarised as follows:   
1) the definition and the study of the MCPITC problem, as a NLP problem, 
2) the modification of BAS, which enables it to handle constrained optimization problems, 
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3) the comparison between BAS, SFLA, FA and GA on a NLP problem in the field of finance. 
Main results of the present paper are summarized as follows. Section 2 describes the MCPI, PSTC and the 

MCPITC optimization problems. In addition, a suitably altered meta-heuristic algorithm addresses the MCPITC 
optimization problem. Section 3 comprises of the numerical experiments, using data from the real world and testing 
the efficacy of BAS, SFLA, FA and GA in different portfolios setups. Finally, section 4 presents the concluding 
remarks. 
 
2. Optimal insured portfolio under nonlinear transaction costs 

 
The reduction of the insurance cost is one way to minimize the expenditure of a portfolio (see [10-18]). For 

example, based on Meton’s optimal investment-consumption model, a continuous-time portfolio insurance model 
is presented in [16]. The results therein show that investors’ optimal strategies of portfolio insurance are not 
dependent on their wealth, but on the market risk. In [18], assuming that investors’ preferences are expressed in 
terms of target sets to be reached at each time period over a specified finite horizon, a portfolio construction 
proposed and approached by stochastic reachability. In general, a portfolio insurance strategy is a dynamic hedging 
process which gives the investor the potential to limit downside risk while allowing upside participation to 
maximize a portfolio's terminal value over a given investment horizon. 

In this section, we define the MCPI, the PSTC and the MCPITC problems. The MCPI problem minimizes a 
portfolio's insurance costs and at the same time keeps its payoff over a price on the market. The PSTC problem 
minimizes the transaction costs of the portfolio while at the same time trying to get an optimal payoff. If we 
consider the MCPI problem along with the PSTC problem, then we can identify the MCPITC problem, which 
minimizes both the cost of the portfolio insurance and its transaction costs and, at the same time, attempts to 
capture the optimal payoff while keeping the payoff above the floor price. In addition, we can solve the MCPITC 
problem by an altered version of the BAS algorithm. 

 
2.1 MCPITC problem definition 

We consider the financial problem of portfolio insurance as in [6, 7, 10-14]. The marketed securities space is 
𝑋𝑋 = [𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛] ∈ ℝ𝑚𝑚×𝑛𝑛  where 𝑥𝑥𝑖𝑖 ∈ ℝ𝑚𝑚  denotes the i-security, for 𝑖𝑖 = 1,2, … ,𝑛𝑛 , and contains information 
from 𝑚𝑚 consecutive measurements on its price. A portfolio is a vector 𝜃𝜃 = (𝜃𝜃1,𝜃𝜃2, … , 𝜃𝜃𝑛𝑛) of ℝ𝑛𝑛 where 𝜃𝜃𝑖𝑖 denotes 
the number of shares of the 𝑖𝑖-security. If 𝜃𝜃 = (𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃𝑛𝑛) is the initial portfolio that is not zero at the first period, 
then the following formula gives its payoff at the second period: 

 
𝐺𝐺(𝜃𝜃) = ∑𝑛𝑛

𝑖𝑖=1 𝜃𝜃𝑖𝑖𝑥𝑥𝑖𝑖 ,                                                                                       (1) 
 

where 𝑥𝑥𝑖𝑖 ∈ ℝ𝑚𝑚, 𝑖𝑖 = 1,2, … ,𝑛𝑛. The 𝐺𝐺 operator is called the payoff operator and is one-to-one. If we also have a 
“floor” price 𝜙𝜙 ∈ ℝ then the payoff after insurance price p on the 𝜃𝜃 portfolio at the 𝜙𝜙 “floor” is the supremum 
𝐺𝐺(𝜃𝜃) ∨ 𝜙𝜙 ⋅ 𝟏𝟏 , where 𝟏𝟏 ∈ ℝ𝑚𝑚  is a vector comprises of ones and " ∨ "  denotes the supremum operator. The 
minimum-cost portfolio insurance 𝜂𝜂 at the floor 𝜙𝜙 and the insurance price 𝑝𝑝 is the solution to the MCPI problem:     

 
 min𝜂𝜂 𝑝𝑝T ⋅ 𝜂𝜂                                                                                                      (2) 

subject to 𝑋𝑋 ⋅ 𝜂𝜂 ≥ 𝐺𝐺(𝜃𝜃) ∨ 𝜙𝜙 ⋅ 𝟏𝟏.                                                                          (3) 
 
The problem (2)-(3) can be rewritten in a LP form as follows:    
 

 min𝜂𝜂 𝑝𝑝T ⋅ 𝜂𝜂                                                                                                      (4) 

subject to −𝑋𝑋 ⋅ 𝜂𝜂 ≤ min{−𝐺𝐺(𝜃𝜃),−𝜙𝜙 ⋅ 𝟏𝟏}                                                           (5) 

 𝟎𝟎 ≤ 𝜂𝜂 ≤ 𝑋𝑋(1, : ) ⋅ 𝜃𝜃 ⋅ � 1
𝑥𝑥1(1)

, … , 1
𝑥𝑥𝑛𝑛(1)

�
T

                                             (6) 
 

where 𝟎𝟎 ∈ ℝ𝑛𝑛 is a vector comprises of zeros. Furthermore, the last part of (6) is the maximum amount of every 
stock that an investor can hold by investing all the portfolio’s payoff into each one of them. Also, 𝑥𝑥𝑖𝑖(1) denotes 
the first element of the vector 𝑥𝑥𝑖𝑖, 𝑖𝑖 = 1, … ,𝑛𝑛. The optimal insured portfolio of (4)-(6) is equal to 𝜂𝜂 = [𝜂𝜂1, … , 𝜂𝜂𝑛𝑛]. 

In addition, transaction costs can be used to define a variety of costs. In a financial sense, transaction costs 
include brokerage commissions, fund loads, taxes, bid-ask spreads, etc. By setting the sum of the transaction costs 
relating to individual transactions as 

 
𝜅𝜅 = ∑𝑛𝑛

𝑖𝑖=1 𝜅𝜅𝑖𝑖 ,                                                                                       (7) 
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where 𝜅𝜅𝑖𝑖 is the function of transaction cost for the asset 𝑖𝑖, we assume that the cost of transaction is separable as 
presented in [19]. Considering that a fixed price is common, for any non-zero trade and that there may be one or 
more situations at which the cost of the transaction per share will reduce in value, we consider a mere model that 
involves fixed plus linear costs. Thus, the buying cost and the selling cost would possibly be concave. By setting 
the cost rates associated with buying and selling asset 𝑖𝑖 as 𝛾𝛾+, 𝛾𝛾−, and the fixed costs relating to purchasing and 
selling i-asset as 𝛽𝛽+, 𝛽𝛽−, respectively,  a fixed-plus-linear function of transaction cost is formulated as follows:  

 

𝜅𝜅𝑖𝑖 = �

0, 𝜂𝜂𝑖𝑖 = 𝜃𝜃𝑖𝑖
𝛽𝛽𝑖𝑖+ + 𝛾𝛾𝑖𝑖+(𝜂𝜂𝑖𝑖 − 𝜃𝜃𝑖𝑖)𝑥𝑥𝑖𝑖(1), 𝜂𝜂𝑖𝑖 > 𝜃𝜃𝑖𝑖
𝛽𝛽𝑖𝑖− + 𝛾𝛾𝑖𝑖−(𝜃𝜃𝑖𝑖 − 𝜂𝜂𝑖𝑖)𝑥𝑥𝑖𝑖(1), 𝜂𝜂𝑖𝑖 < 𝜃𝜃𝑖𝑖

                                                           (8) 

 
where 𝑥𝑥𝑖𝑖(1) denotes the first price of the 𝑖𝑖-stock. Note that (8) is explicitly nonconvex with the exception of zero 
fixed costs case. In this way, we are extending our approach to deal with more complex transaction cost functions.  

According to that, we set as the PSTC problem the minimization of the total transaction costs under the 
constraints of the portfolio. Thus, the PSTC problem is formulated as follows:     

 
 min𝜂𝜂 𝜅𝜅                                                                                                  (9) 

subject to −𝑋𝑋 ⋅ 𝜂𝜂 ≤ min{−𝐺𝐺(𝜃𝜃),−𝜙𝜙 ⋅ 𝟏𝟏}                                                    (10) 

 𝜂𝜂𝑖𝑖 ≥ 0    ∀𝑖𝑖,                                                                                 (11) 
 

where 𝜅𝜅 is defined in (7). 
Consequently, combining the problem of (4)-(6) with the problem (9)-(11), the MCPITC problem can be 

defined in the following NLP form:     
 

 min𝜂𝜂 𝑝𝑝T ⋅ 𝜂𝜂 + 𝜅𝜅                                                                                (12) 

subject to −𝑋𝑋 ⋅ 𝜂𝜂 ≤ min{−𝐺𝐺(𝜃𝜃),−𝜙𝜙 ⋅ 𝟏𝟏}                                                   (13) 
 𝟎𝟎 ≤ 𝜂𝜂 ≤ 𝑋𝑋(1, : ) ⋅ 𝜃𝜃 ⋅ � 1

𝑥𝑥1(1)
, … , 1

𝑥𝑥𝑛𝑛(1)
�
T

,                                     (14) 
 
The following algorithmic procedure can be easily implemented as a MATLAB function for calculating (12). 

 
Algorithm 1 Algorithmic procedure for (12). 
Input: The insurance prices 𝑝𝑝, the stock prices 𝑋𝑋, the portfolio 𝜂𝜂, the initial portfolio 𝜃𝜃, the fixed costs 𝛽𝛽−, 
𝛽𝛽+ and the costs rates 𝛾𝛾−, 𝛾𝛾+.   
1: function f = minfunc(𝜂𝜂, 𝜃𝜃, 𝑝𝑝, 𝑋𝑋, 𝛽𝛽−, 𝛽𝛽+, 𝛾𝛾−, 𝛾𝛾+)   
2:     Set 𝑓𝑓 = 𝑝𝑝′𝜂𝜂 + sum((𝜂𝜂 > 𝜃𝜃). (𝛽𝛽+ + 𝛾𝛾+(𝜂𝜂 − 𝜃𝜃).𝑋𝑋(1, : )′) + (𝜂𝜂 < 𝜃𝜃). (𝛽𝛽− + 𝛾𝛾−(𝜃𝜃 − 𝜂𝜂).𝑋𝑋(1, : )′)) 
3:     return 𝑓𝑓  
4: end function 
Output: The function in (12).   
 
2.2 BAS algorithm approach on the MCPITC problem 

In [20], the penalty functions operate in a series of sequences, changing each time the penalty parameters, while 
starting a new sequence from the predecessors. During construction of any sequence the following penalty function 
is maximized:  

𝑉𝑉(𝑧𝑧,𝑅𝑅) = 𝑓𝑓(𝑧𝑧) − Ω(𝑅𝑅,𝑑𝑑(𝑧𝑧), 𝑟𝑟(𝑧𝑧)),                                                 (15) 
 

where Ω is the penalty term and 𝑓𝑓(𝑧𝑧) is the objective function. Moreover, 𝑅𝑅 is a set of penalty parameters, 𝑑𝑑(𝑧𝑧) is 
the inequality constraint function and 𝑟𝑟(𝑦𝑦) is the equality constraint function. Note that, for equality or inequality 
constraints, different penalty terms are used. More details about the penalty function methods can be found in [20] 
and, in general, the key benefit of this approach is that it enables any convex or nonconvex constraints to be 
complied with. 

As mentioned before, we approach the solution of the MCPITC problem through a modified BAS algorithm. 
Since BAS is directly applicable only to unconstrained optimization, it is necessary to use some additional methods 
that will keep solutions in the feasible region. Our modified version of BAS incorporates the aforementioned 
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penalty function. Therefore, we just use penalty function (15) and the initial value of the penalty parameter is 
settled by the user. Note that 𝑅𝑅 remains constant over all the sequences generated by BAS. We can therefore build 
an even more effective modified BAS algorithm than the primary one by simply considering a penalty function as 
shown in (16). This approach helps BAS to manage convex or nonconvex constraints more effectively. 
Nevertheless, the concept of the BAS algorithm remains similar to the one set out in [21]. 

    The following penalty function is used,  
 

Ω = 𝑅𝑅〈𝑑𝑑𝑗𝑗(𝑧𝑧)〉2,                                                                       (16) 
 

where 𝑑𝑑𝑗𝑗(𝑧𝑧) is a penalty term handling the j-th inequality constraint and 〈⋅〉 denotes the bracket-operator with 
〈𝑤𝑤〉 = 𝑤𝑤, if 𝑤𝑤 is negative, otherwise 〈𝑤𝑤〉 = 0. The bracket operator is an external penalty term, since the infeasible 
points are inserted with a negative value. This operator is mainly used to deal with the constraints on inequality. 
The corresponding algorithmic procedure, which handles the equality/inequality constraint of MCPITC, is shown 
in algorithm 2. 

 
Algorithm 2 Penalty function algorithm for MCPITC. 
Input: The requirements of Algorithm 1 plus the penalty parameter 𝑅𝑅, 𝑏𝑏 the right part of Eq. (13), the 

lower limit 𝜂𝜂− and upper limit 𝜂𝜂+ of Eq. (14), respectively. 
1: function V = penfunc(𝜂𝜂, 𝜃𝜃, 𝑝𝑝, 𝑋𝑋, 𝑏𝑏, 𝑅𝑅, 𝜂𝜂−, 𝜂𝜂+, 𝛽𝛽−, 𝛽𝛽+, 𝛾𝛾−, 𝛾𝛾+)   
2:     Set Ω = 𝑅𝑅(sum((−𝑋𝑋𝜂𝜂 > 𝑏𝑏). (−𝑋𝑋𝜂𝜂 + 𝑏𝑏)2 + (𝜂𝜂− > 𝜂𝜂). (𝜂𝜂− − 𝜂𝜂)2 + (𝜂𝜂 > 𝜂𝜂+). (𝜂𝜂 − 𝜂𝜂+)2)) 
3:     Set 𝑉𝑉 = minfunc(𝜂𝜂,𝜃𝜃, 𝑝𝑝,𝑋𝑋,𝛽𝛽−,𝛽𝛽+, 𝛾𝛾−, 𝛾𝛾+) + Ω 
4:     return 𝑃𝑃  
5: end function 
Output: The outcome of Penalty Function. 

 
According to [21], the way in which beetles track food using two antennas is determined by the strength of the 

odor they sense on the antennas. The BAS algorithm mimics these behaviors in order to discover an optimum 
solution to the problem. Beetle search behaviour can be designed to solve the problem of optimizing an objective 
function. This approach allows the implementation of new optimization algorithms (see [22-25]). 

Using the MATLAB functions minfunc, which implements Algorithm 1, and penfunc, which implements 
Algorithm 2 we modified the BAS algorithm in the following Algorithm 3. 

 
Algorithm 3 MCPITC problem through BAS algorithm. 
Input: The requirements of Algorithms 1 and 2 plus the parameters 𝑑𝑑, 𝛿𝛿, 𝑡𝑡𝑡𝑡𝑡𝑡 and 𝑘𝑘𝑚𝑚𝑘𝑘𝑥𝑥.   
1: function [𝜂𝜂,𝑓𝑓𝜂𝜂] = basfunc(𝜃𝜃, 𝑝𝑝, 𝑋𝑋, 𝑏𝑏, 𝑅𝑅, 𝜂𝜂−, 𝜂𝜂+, 𝛽𝛽−, 𝛽𝛽+, 𝛾𝛾−, 𝛾𝛾+, 𝑑𝑑, 𝛿𝛿, 𝑡𝑡𝑡𝑡𝑡𝑡, 𝑘𝑘𝑚𝑚𝑘𝑘𝑥𝑥) 
2:     Set 𝑦𝑦1 = 𝜃𝜃 and 𝑦𝑦2 = (𝑛𝑛𝑘𝑘𝑛𝑛)ones(size(𝜃𝜃))   
3:     Set 𝑘𝑘 = 0 and 𝑡𝑡𝑙𝑙𝑛𝑛 = length(𝜃𝜃) 
4:     While 𝑘𝑘 < 𝑘𝑘𝑚𝑚𝑘𝑘𝑥𝑥  and ‖penfunc(𝑦𝑦2 , … ) − penfunc(𝑦𝑦1, … )‖2 > 𝑡𝑡𝑡𝑡𝑡𝑡   

5:         Set 𝑏𝑏 = rands(𝑘𝑘, 1) and 𝑏𝑏 = 𝑏𝑏
2−52+‖𝑏𝑏‖

   
6:         Set 𝑦𝑦𝑟𝑟 = 𝑦𝑦1 − 𝑑𝑑𝑏𝑏 and 𝑦𝑦𝑙𝑙 = 𝑦𝑦1 + 𝑑𝑑𝑏𝑏   
7:         Set 𝑦𝑦 = |𝑦𝑦1 + 𝛿𝛿𝑏𝑏(sign(penfunc(𝑦𝑦𝑟𝑟 , … ) − penfunc(𝑦𝑦𝑙𝑙 , … )))| 
8:         if penfunc(𝑦𝑦, … ) < penfunc(𝑦𝑦1, … ) then 
9:             Set 𝑦𝑦2 = 𝑦𝑦1 and 𝑦𝑦1 = 𝑦𝑦    
10:        end if 
11:        Set 𝑑𝑑 = 0.988𝑑𝑑 + 0.001 and 𝛿𝛿 = 0.988𝛿𝛿 
12:    end while 
13:    return 𝜂𝜂 = 𝑦𝑦1, 𝑓𝑓𝜂𝜂 = minfunc(𝑦𝑦1 ,𝜃𝜃, 𝑝𝑝,𝑋𝑋, … )  
14: end function 
Output: 𝜂𝜂, 𝑓𝑓𝜂𝜂. 
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The dots in the inputs of minfunc and penfunc (see Algorithm 3), imply that all other inputs remain the same as 
the ones stated in Algorithms 1 and 2. 

 
3. Numerical examples 

 
In this section 3 numerical examples are presented. Furthermore, some additional information must be given 

for the following numerical examples as preliminaries. 
First, the function 𝜅𝜅𝑖𝑖 has the same coefficients for all numerical examples of this section. Thus, 𝜅𝜅𝑖𝑖 is defined as 

follows:  
 

𝜅𝜅𝑖𝑖 = �
0, 𝜂𝜂𝑖𝑖 = 𝜃𝜃𝑖𝑖
0.1 + 0.06(𝜂𝜂𝑖𝑖 − 𝜃𝜃𝑖𝑖)𝑥𝑥𝑖𝑖(1), 𝜂𝜂𝑖𝑖 > 𝜃𝜃𝑖𝑖
0.1 + 0.04(𝜃𝜃𝑖𝑖 − 𝜂𝜂𝑖𝑖)𝑥𝑥𝑖𝑖(1), 𝜂𝜂𝑖𝑖 < 𝜃𝜃𝑖𝑖

 

 
where we have set 𝛽𝛽𝑖𝑖+ = 𝛽𝛽𝑖𝑖− = 0.1, 𝛾𝛾𝑖𝑖+ = 0.06 and 𝛾𝛾𝑖𝑖− = 0.04. 

Second, we presume that our portfolio's insurance costs include a fixed premium plus a risk (i.e., rate of the 
variance of the assets). Assuming that 𝜁𝜁 is the fixed price and 𝛼𝛼 is the price rates relating to the risk of assets, then 
the function of the fixed-plus-linear insurance prices is formulated as follows:  

 
𝑝𝑝𝑖𝑖 = 𝜁𝜁 + 𝛼𝛼 ⋅ Var[ 𝑥𝑥𝑖𝑖

max(𝑥𝑥𝑖𝑖)
], 𝑖𝑖 = 1,2, … ,𝑛𝑛,                                                 (17) 

 
where Var[𝑌𝑌] denotes the variance of 𝑌𝑌. Since 𝑥𝑥𝑖𝑖 ∈ ℝ𝑚𝑚, we estimate the risk of the 𝑖𝑖-asset from the variance 

of its 𝑚𝑚 normalized prices. In the following examples, the values of 𝛼𝛼 and 𝜁𝜁 are chosen in such a way that the 
insurance price is appropriate for the corresponding price of the stock. It should be noted that small changes in the 
value of 𝛼𝛼 can cause large changes in the insurance prices. 

Also, note that insurance premium is called the amount of money a company or person has to pay for an 
insurance plan. In fact, the insurance premium for each asset depends on the degree of risk it bears, where risk is 
the probability that the actual return may vary from the anticipated return. Consequently, the insurance prices 
become more realistic. 

Third, in the numerical examples of this section, we have set 𝑅𝑅 = 1𝑙𝑙5 , 𝑑𝑑 = 2 , 𝛿𝛿 = 2 , 𝑡𝑡𝑡𝑡𝑡𝑡 = 1𝑙𝑙 − 6  and 
𝑘𝑘𝑚𝑚𝑘𝑘𝑥𝑥 = 1200 in Algorithm 3. For BAS to produce more accurate results, we set the penalty value, the maximum 
iterations value and the tolerance value high. In addition, the parameters of the beetle’s antennae 𝑑𝑑 and 𝛿𝛿 are 
chosen in such a way that the optimal solution to the problem should be within their range. Note that 𝑑𝑑 and 𝛿𝛿 are 
highly sensitive parameters and must always be within the range of the optimal solution. 

Fourth, in the following examples, we use the default settings in GA. We use SFLA with maximum number of 
iterations 1000, memeplex size 10, number of memeplexes 5, number of offsprings 3 and step size 2. Furthermore, 
we use FA with population size 20, randomness strength 1, attractiveness constant 1, absorption coefficient 0.01, 
randomness reduction factor 0.97 and maximum number of iterations 500. 

Lastly, the Tabs. 1, 2, 3 comprise of ticker symbols of stocks. A ticker symbol is an arrangement of characters 
that represents particular securities listed on an exchange or otherwise traded publicly. Every security listed has a 
unique ticker symbol, which facilitates the vast array of trade orders that flow every day across the financial 
markets. 

 
3.1 Example A 

Tab. 1 comprises of the stocks' ticker symbols which we use in the space of marketed securities 𝑋𝑋 in this 
example.  

 
Table 1. Market stocks 

Market 
AAL AMD F GE 

 
More precisely, let 𝑋𝑋 = [𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4], where 𝑋𝑋 composed of the stocks daily close prices of Tab. 1 for the time 

period 1/7/2020 to 31/7/2020. In this time period, there exists 22 observations, so, 𝑋𝑋 ∈ ℝ22×4. Given a portfolio 
𝜃𝜃 = [2,10,2,1]T, a floor 𝜙𝜙 = 580 and 𝛼𝛼 = 3000, 𝜁𝜁 = 5 in (17), we present the findings in Fig. 1 where: 

1) Fig. 1a displays the payoff of the portfolio 𝜂𝜂, which is 𝑋𝑋 ⋅ 𝜂𝜂, created by BAS, SFLA, FA and GA. Also, Fig. 
1a displays the payoff of the portfolio 𝜃𝜃 as well as the floor price;  

2) Fig. 1b displays the cost of the portfolio 𝜂𝜂, which is the outcome of (12). Note that (12) comprises of the 
insurance cost plus the transaction cost of the portfolio 𝜂𝜂. Also, Fig. 1b displays the insurance cost of the portfolio 
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𝜃𝜃, since its transaction cost is zero;  
3) Fig. 1c displays the payoff-after-cost (PAC), which is PAC=payoff-cost, of the portfolios 𝜂𝜂 and 𝜃𝜃. 
The time consumptions of BAS, SFLA, FA and GA, in numerical example 3.1, are presented in Tab. 4. 

 

   
(a) Payoff of Portfolios. (b) Cost of Portfolios. (c) Payoff-after-cost (PAC) of 

Portfolios. 
Figure 1. The payoff, the cost and the payoff-after-cost of four stocks (see example A). 

 
3.2 Example B 

Tab. 2 comprises of the stocks' ticker symbols which we use in the space 𝑋𝑋 in this example. 
More precisely, let 𝑋𝑋 = [𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4, 𝑥𝑥5, 𝑥𝑥6], where 𝑋𝑋 composed of the stocks daily close prices of Tab. 2 for 

the time period 2/3/2020 to 30/4/2020. In this time period, there exists 43 observations, so, 𝑋𝑋 ∈ ℝ43×6. Given a 
portfolio 𝜃𝜃 = [2,8,0,1,1,3]T , a floor 𝜙𝜙 = 400 and 𝛼𝛼 = 2400, 𝜁𝜁 = 7 in (17), we present the findings in Fig. 2 
where:   

1) Fig. 2a displays the payoff of the portfolio 𝜂𝜂, which is 𝑋𝑋 ⋅ 𝜂𝜂, created by BAS, SFLA, FA and GA. Also, Fig. 
2a displays the payoff of the portfolio 𝜃𝜃 as well as the floor price;  

2) Fig. 2b displays the cost of the portfolio 𝜂𝜂, which is the outcome of (12). Note that (12) comprises of the 
insurance cost plus the transaction cost of the portfolio 𝜂𝜂. Also, Fig. 2b displays the insurance cost of the portfolio 
𝜃𝜃, since its transaction cost is zero;  

3) Fig. 2c displays the payoff-after-cost (PAC), which is PAC=payoff-cost, of the portfolios 𝜂𝜂 and 𝜃𝜃.  
The time consumptions of BAS, SFLA, FA and GA, in numerical example 3.2, are presented in Tab. 4. 
 

 Table 2. Market stocks 
Market 

AAL AMD F GE SRNE VALE 
 

   
(a) Payoff of Portfolios. (b) Cost of Portfolios. (c) Payoff-after-cost (PAC) of 

Portfolios. 
Figure 2. The payoff, the cost and the payoff-after-cost of six stocks (see example B). 

 
3.3 Example C 

Tab. 3 comprises of the stocks' ticker symbols which we use in the space 𝑋𝑋 in this example. 
  

Table 3. Market stocks 
Market 

AAL AMD F GE NIO PINS SRNE VALE 
 
More precisely, let 𝑋𝑋 = [𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4, 𝑥𝑥5, 𝑥𝑥6, 𝑥𝑥7, 𝑥𝑥8], where 𝑋𝑋 composed of the stocks daily close prices of Tab. 

3 for the time period 1/5/2020 to 31/7/2020. In this time period, there exists 64 observations, so, 𝑋𝑋 ∈ ℝ64×8. Given 
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a portfolio 𝜃𝜃 = [2,7,1,1,2,4,1,0]T, a floor 𝜙𝜙 = 570 and 𝛼𝛼 = 800, 𝜁𝜁 = 5 in (17), we present the findings in Fig. 3 
where:   

1) Fig. 3a displays the payoff of the portfolio 𝜂𝜂, which is 𝑋𝑋 ⋅ 𝜂𝜂, created by BAS, SFLA, FA and GA. Also, Fig. 
3a displays the payoff of the portfolio 𝜃𝜃 as well as the floor price;  

2) Fig. 3b displays the cost of the portfolio 𝜂𝜂, which is the outcome of (12). Note that (12) comprises of the 
insurance cost plus the transaction cost of the portfolio 𝜂𝜂. Also, Fig. 3b displays the insurance cost of the portfolio 
𝜃𝜃, since its transaction cost is zero;  

3) Fig. 3c displays the payoff-after-cost (PAC), which is PAC=payoff-cost, of the portfolios 𝜂𝜂 and 𝜃𝜃.  
The time consumptions of BAS, SFLA, FA and GA, in numerical example 3.3, are presented in Tab. 4. 

 

   
(a) Payoff of Portfolios. (b) Cost of Portfolios. (c) Payoff-after-cost (PAC) of 

Portfolios. 
Figure 3. The payoff, the cost and the payoff-after-cost of eight stocks (see example C). 

 
3.4 Superiority of the proposed method 

We compared the performance of BAS, as presented in Algorithm 3, against the SFLA, FA and GA in 
MATLAB environment. The corresponding numerical results are shown in Tab. 4, which shows the average 
execution time of examples 3.1, 3.2 and 3.3. Note that, all numerical examples were executed using the MATLAB 
R2018b environment on a laptop HP-15-da0103nv, running on Windows 10 64 bit Operating System. 

The results that are depicted in Figs. 1, 2, 3 show that BAS successfully solves the MCPITC problem and 
generates the solutions 𝜂𝜂 of numerical examples 3.1, 3.2 and 3.3, respectively. In numerical example 3.1, GA is 
the worst-performing method and, in numerical examples 3.2, 3.3, FA is the worst-performing method. The 
payoffs of the portfolios 𝜂𝜂 are shown in Figs. 1a, 2a, 3a and the costs of the portfolios 𝜂𝜂 are displayed in Figs. 1b, 
2b, 3b in numerical examples 3.1, 3.2, 3.3, respectively. Note that, the cost of the portfolio 𝜂𝜂 is the outcome of 
(12), that is, the insurance cost plus the transaction cost of the portfolio 𝜂𝜂. Furthermore, in Figs. 1b, 2b, 3b is 
noticeable that the solution of BAS has the least cost on average contrasted to the solutions produced by SFLA, 
FA, GA. Also, Figs. 1c, 2c, 3c shows the payoff-after-cost (PAC) of the portfolios 𝜂𝜂 and 𝜃𝜃. Note that we see the 
clear payoff of the solutions through the PAC graph, which is PAC= payoff-cost, and thus we have a better insight. 
There, we observe that the solution of BAS gives, on average, the best outcome compared with the solutions of 
SFLA, FA, GA, in all numerical examples presented in this section. The time consumed in these examples is 
displayed in Tab. 4, and indicates that the BAS is much faster, on average, compared with SFLA, FA, GA, in all 
numerical examples presented in this section. In addition, the conclusion arising from Tab. 4 and Figs. 1, 2, 3 is 
that BAS performs more efficiently than the SFLA, FA and GA, in all numerical examples presented in this section 
and also worked excellently in solving the MCPITC problem. 
 

Table 4. Examples 3.1, 3.2 and 3.3 execution time 
Example BAS SFLA FA GA 

3.1 0.04𝑠𝑠 8.34𝑠𝑠 1.1𝑠𝑠 2.15𝑠𝑠 
3.2 0.04𝑠𝑠 7.07𝑠𝑠 1.03𝑠𝑠 38.7𝑠𝑠 
3.3 0.03𝑠𝑠 7.02𝑠𝑠 0.94𝑠𝑠 41.18𝑠𝑠 

   
4. Conclusion 

 
The MCPITC problem is introduced in this paper. In addition, the BAS algorithm has provided a solution to the 

MCPITC problem, where three numerical examples have demonstrated its efficacy in such a financial NLP 
problem. In line with our numerical simulations, we concluded that the BAS method offers such a solution to the 
MCPITC problem that it makes it a highly competitive substitute, or even better than the SFLA, FA and GA 
methods. Experimental findings show the reliability of the proposed approach in various and realistic portfolio 
configurations on real-world datasets, and illustrate its usefulness in practical scenarios. 
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