279 research outputs found

    Mechanical and physical characterization of natural and synthetic consolidants

    Get PDF
    Abstract The mechanical behavior of adhesives is strongly influenced by a large number of variables, relating to a complex interaction of mechanical-physical-chemical factors, such as its loading direction (shear, peel), the temperature and the environmental relative humidity (RH). These variables can have a large influence on the durability of restored art objects where thermoplastic adhesives have been used as a consolidant. This study aims to characterise the mechanical and physical behavior of some adhesives commonly used polymers by conservators as consolidants to restore cultural objects such as canvas paintings or historic wooden furniture. Twelve commercially available natural and synthetic adhesive materials were tested. The influence of RH at room temperature on the mechanical and physical properties of the adhesives was investigated. Shear and peel experiments were performed on adhesively bonded wood and canvas coupon to establish mechanical characterisation. The physical properties of the adhesives were determined by performing moisture adsorption measurements and Differential Scanning Calorimetry (DSC). The results of this study demonstrate that synthetic adhesive products are able to resist higher shear and peel loads than natural types. Moreover, the influence of important changes in RH on the mechanical properties of the adhesives was demonstrated. Reflecting on the combined data derived from shear and peel tests with the adhesive's sensitivity to moisture will help conservators to select the most suitable adhesives for their applications to achieve optimal durability and the best mechanical performance in versatile environmental conditions

    Indoor environment propagation review

    Get PDF
    A survey of indoor propagation characteristics is presented, including different models for path loss, shadowing and fast fading mechanisms, different channel parameters including signal strength, power delay, coherence bandwidth, Doppler spread and angle of arrival. The concepts of MIMO channels are also covered. The study also explores many types of deterministic channel modelling, such as Finite Difference Time Domain, Finite Integration Method, Ray tracing and the Dominant path model. Electromagnetic properties of building materials, including frequency dependence, are also investigated and several models for propagation through buildings are reviewed

    Linking Financial Development and Environment in Developed Nation Using Frequency Domain Causality Techniques: The Role of Globalization and Renewable Energy Consumption

    Full text link
    The topic of whether globalization, energy consumption and financial development can substantially reduce emissions during the globalization era remains unanswered. In this context, this research highlights empirical indications supporting this theoretical discord; assessing the effect of globalization, energy consumption and financial development on the CO2 emissions in Japan (utilizing a dataset that spans between 1990 and 2019). The study employed the Autoregressive Distributed Lag (ARDL) technique and frequency domain causality to probe these relationships. Unlike other conventional causality tests, the frequency domain causality test can capture causality at different frequencies. The findings from the ARDL analysis disclosed that globalization and renewable energy contribute to the mitigation of CO2 emissions while fossil fuel, economic growth and financial development caused an upsurge in CO2 in Japan. Furthermore, the frequency domain demonstrated that all the exogenous variables can forecast CO2 mostly in the long-term which implies that any policy initiated based on the exogenous variables will impact emissions of CO2. Based on the results obtained, Japan has to improve its financial systems and increase its use of renewable energy. Furthermore, Japan needs to restructure its policy regarding globalization owing to the fact that it contributes to the degradation of the environment. Since globalization is a major driver of economic growth, the government should concentrate on luring and licensing investors that use environmentally beneficial (net-zero) technology. Copyright © 2022 Mosleh, Al-Geitany, Lawrence Emeagwali, Altuntaş, Agyekum, Kamel, El-Naggar and Agbozo

    CANDELS: The progenitors of compact quiescent galaxies at z~2

    Get PDF
    We combine high-resolution HST/WFC3 images with multi-wavelength photometry to track the evolution of structure and activity of massive (log(M*) > 10) galaxies at redshifts z = 1.4 - 3 in two fields of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). We detect compact, star-forming galaxies (cSFGs) whose number densities, masses, sizes, and star formation rates qualify them as likely progenitors of compact, quiescent, massive galaxies (cQGs) at z = 1.5 - 3. At z > 2 most cSFGs have specific star-formation rates (sSFR = 10^-9 yr^-1) half that of typical, massive SFGs at the same epoch, and host X-ray luminous AGN 30 times (~30%) more frequently. These properties suggest that cSFGs are formed by gas-rich processes (mergers or disk-instabilities) that induce a compact starburst and feed an AGN, which, in turn, quench the star formation on dynamical timescales (few 10^8 yr). The cSFGs are continuously being formed at z = 2 - 3 and fade to cQGs by z = 1.5. After this epoch, cSFGs are rare, thereby truncating the formation of new cQGs. Meanwhile, down to z = 1, existing cQGs continue to enlarge to match local QGs in size, while less-gas-rich mergers and other secular mechanisms shepherd (larger) SFGs as later arrivals to the red sequence. In summary, we propose two evolutionary scenarios of QG formation: an early (z > 2), fast-formation path of rapidly-quenched cSFGs that evolve into cQGs that later enlarge within the quiescent phase, and a slow, late-arrival (z < 2) path for SFGs to form QGs without passing through a compact state.Comment: Submitted to the Astrophysical Journal Letters, 6 pages, 4 figure

    The FIREBIRD Instrument for Relativistic Electrons: Enabling Technologies for a Fast High-Sensitivity, Low-Power Space Weather Radiation Payload

    Get PDF
    Miniaturized instrument payloads on small satellite and nanosatellite platforms that are deployed in low Earth orbit are demonstrating cost effective weather monitoring platforms with increased temporal and spatial resolution compared to larger weather satellites. The NASA Earth Decadal Survey [1] states that improving the revisit time of microwave radiometers would significantly improve weather forecasting. Radiometers such as the Advanced Technology Microwave Sounder (ATMS) on Suomi National Polar-orbiting Partnership (Suomi-NPP) and the Joint Polar Satellite System-1 (JPSS-1), now NOAA-20, provide an average revisit rate of 7.6 hours; however, a constellation of six CubeSats in three orbital Low Earth Orbit (LEO) planes with microwave radiometers such as the Time-Resolved Observations of Precipitations structure and storm Intensity with a Constellation of Smallsats (TROPICS) mission would provide a refresh rate of better than 60 minutes. In order to effectively use CubeSats in a constellation as a weather monitoring platform, calibration must be used to provide measurements consistent with state of the art measurements, such as ATMS that has a NeDT at 300K of 0.5-3.0K [2]. In this work, we use the Joint Center for Satellite Data Assimilation (JCSDA) Community Radiative Transfer Model (CRTM) to simulate brightness temperatures (https://www.jcsda.noaa.gov/projects_crtm.php), which are used to assess miniaturized microwave radiometer radiometric biases. CRTM is a fast radiative transfer model that uses Fortran functions, structure variables, and coefficient data of the modeled sensor to simulate radiances. The user inputs surface characteristics, scan angles, and atmospheric profiles from sources such as radiosondes, Numerical Weather Prediction (NWP) models, and Global Positioning System Radio Occultation (GPSRO) measurements. The output of CRTM is a simulated brightness temperature that is used to correct radiometric biases in order to meet required instrument NeDT performance. We use radiosonde, GPSRO, and NWP ERA-5 atmospheric profiles in CRTM and compare the results to ATMS brightness temperatures and find an average difference in brightness temperature of 1.95 K, which is comparable to ATMS Integrated Calibration/Validation System (https://www.star.nesdis.noaa.gov/icvs/status_NPP_ATMS.php) reports which show channel bias variations of up to 2 K. We take a similar approach to provide calibration for the Micro-sized Microwave Atmospheric Satellite-2A (MicroMAS-2A), a 3U CubeSat that was launched on January 11th, 2018. MicroMAS-2A carries a 1U 10-channel passive microwave radiometer that provides imagery near 90 and 206 GHz, temperature sounding near 118 GHz, and moisture sounding near 183 GHz. We develop an approach for comparing MicroMas-2A brightness temperatures to radiosonde, GPSRO, and NWP ERA5 atmospheric profiles. Due to the scarcity of GPSRO and radiosonde profiles near the MicroMAS-2A data segments, we determine that NWP models will be the best option for radiance validation. After the next stage of calibration of MicroMAS-2A is completed, we will compare CRTM simulated radiances from ERA profiles to the initial sensor data, with expected results of channel bias variations of \u3c 2 K

    High pressure gas flow, storage, and displacement in fractured rock-Experimental setup development and application.

    Get PDF
    This paper presents the design, development, and application of a laboratory setup for the experimental investigations of gas flow and reactions in a fractured rock. The laboratory facility comprises (i) a high pressure manometric sorption apparatus, where equilibrium and kinetic phenomena of adsorption and desorption can be examined, (ii) a high pressure triaxial core flooding system where the chemical reactive transport properties or processes can be explored, and (iii) an ancillary system including pure and mixed gas supply and analysis units. Underground conditions, in terms of pore pressure, confining pressure, and temperature, can be replicated using the triaxial core flooding system developed for depths up to 2 km. Core flooding experiments can be conducted under a range of gas injection pressures up to 20 MPa and temperatures up to 338 K. Details of the design considerations and the specification for the critical measuring instruments are described. The newly developed laboratory facility has been applied to study the adsorption of N2, CH4, and CO2 relevant to applications in carbon sequestration in coal and enhanced coalbed methane recovery. Under a wide range of pressures, the flow of helium in a core sample was studied and the evolution of absolute permeability at different effective stress conditions has been investigated. A comprehensive set of high resolution data has been produced on anthracite coal samples from the South Wales coalfield, using the developed apparatus. The results of the applications provide improved insight into the high pressure flow and reaction of various gas species in the coal samples from the South Wales coalfield

    Bim and Bmf synergize to induce apoptosis in Neisseria gonorrhoeae infection

    Get PDF
    Abstract: Bcl-2 family proteins including the pro-apoptotic BH3-only proteins are central regulators of apoptotic cell death. Here we show by a focused siRNA miniscreen that the synergistic action of the BH3-only proteins Bim and Bmf is required for apoptosis induced by infection with Neisseria gonorrhoeae (Ngo). While Bim and Bmf were associated with the cytoskeleton of healthy cells, they both were released upon Ngo infection. Loss of Bim and Bmf from the cytoskeleton fraction required the activation of Jun-N-terminal kinase-1 (JNK-1), which in turn depended on Rac-1. Depletion and inhibition of Rac-1, JNK-1, Bim, or Bmf prevented the activation of Bak and Bax and the subsequent activation of caspases. Apoptosis could be reconstituted in Bim-depleted and Bmf-depleted cells by additional silencing of antiapoptotic Mcl-1 and Bcl-XL, respectively. Our data indicate a synergistic role for both cytoskeletal-associated BH3-only proteins, Bim, and Bmf, in an apoptotic pathway leading to the clearance of Ngo-infected cells. Author Summary: A variety of physiological death signals, as well as pathological insults, trigger apoptosis, a genetically programmed form of cell death. Pathogens often induce host cell apoptosis to establish a successful infection. Neisseria gonorrhoeae (Ngo), the etiological agent of the sexually transmitted disease gonorrhoea, is a highly adapted obligate human-specific pathogen and has been shown to induce apoptosis in infected cells. Here we unveil the molecular mechanisms leading to apoptosis of infected cells. We show that Ngo-mediated apoptosis requires a special subset of proapoptotic proteins from the group of BH3-only proteins. BH3-only proteins act as stress sensors to translate toxic environmental signals to the initiation of apoptosis. In a siRNA-based miniscreen, we found Bim and Bmf, BH3-only proteins associated with the cytoskeleton, necessary to induce host cell apoptosis upon infection. Bim and Bmf inactivated different inhibitors of apoptosis and thereby induced cell death in response to infection. Our data unveil a novel pathway of infection-induced apoptosis that enhances our understanding of the mechanism by which BH3-only proteins control apoptotic cell death
    corecore