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Abstract. This paper provides an overview of numerical methods in
order to solve fuzzy equations (FEs). It focuses on different numerical
methodologies to solve FEs, dual fuzzy equations (DFEs), fuzzy differen-
tial equations (FDEs) and partial fuzzy differential equations (PFDEs).
The solutions which are produced by these equations are taken to be the
controllers. This paper also analyzes the existence of the roots of FEs
and some important implementation problems. Finally, several examples
are reviewed with different methods.
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1 Introduction

Fuzzy numbers have been used in many studies to deal with uncertainties in re-
cent years [1–16]. Several approaches used the parametric form of fuzzy numbers
for uncertainties in crisp dynamic systems [17]. In [18], the extension principle
is implemented and suggests that the coefficients can be real or complex fuzzy
numbers, where the system uncertainties are represented by fuzzy coefficients.

FEs are the equations whose parameters can be changed from the form of the
fuzzy set [19]. The solutions of the FEs can be applied directly for modeling and
nonlinear control. The results of the feedback control in reference to the wave
equation is described in [20], while the open loop control corresponding to the
wave equation is shown in [21]. However, the solutions are not easy to obtain.
[22] introduced Newton’s method. In [23], the fixed-point technique is used in
order to obtain the solution of FEs. The numerical solutions of the FEs can
be obtained applying the iterative method [24], the interpolation method [25]
and Runge-Kutta method [26]. It can also be implemented to the differential
equations. [27] portrays Euler’s numerical technique methodology to solve the
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FDE. The extension of classical fuzzy set theory in [28] results in obtaining a
numerical solution of FDE. The wave solutions associated with two nonlinear
PDE systems have been investigated in [29]. In [30] a static neural network is
suggested to solve FDE. In [31] neural network is used in order to obtain the
solution of the ordinary differential equation (ODE).

In this work, a survey is presented on the numerical solutions of the FEs,
DFEs, FDE, and PFDE. The privileges of numerical techniques regarded to the
precision are explained. The study of prior works demonstrates detail explana-
tions in order to obtain numerical solutions for these equations. This paper is
structured as follows. In Section 2, some basic definitions and notions used in
the rest of the paper are given. In section 3, some numerical methods in order
to find the numerical solutions of the FEs and the DFEs are presented. Section
4 describes some numerical methods in order to find the numerical solutions of
the FDEs and PFDEs. In Section 5, some examples are provided with different
methods in order to compare the efficiency of the numerical methods to ap-
proximate the solution of DFEs and FDEs. Conclusions are included in Section
6.

2 Mathematical preliminaries

The following definitions are used in this paper.

Definition 1. If x is: 1) normal, there exists ζ0 ∈ R in such a manner that
x(ζ0) = 1; 2) convex, x [λζ + (1− λ)ξ] ≥min{x(ζ), x(ξ)}, ∀ζ, ξ ∈ R, ∀λ ∈ [0, 1];
3) upper semi-continuous on R, x(ζ) ≤ x(ζ0) + ε, ∀ζ ∈ N(ζ0), ∀ζ0 ∈ R, ∀ε > 0,
N(ζ0) is a neighborhood; or 4) x+ = {ζ ∈ R, x(ζ) > 0} is compact, then x is a
fuzzy variable, and the fuzzy set is defined as E, x ∈ E : R → [0, 1].

The fuzzy variable x can also be represented as

x = A (x, x̄) (1)

where x is the lower-bound variable, x̄ is the upper-bound variable, and A is
a continuous function. The membership functions are utilized to implicate the
fuzzy variable x. The best known membership function is the triangular function

x (ζ) = F (a, b, c) =


ζ−a
b−a a ≤ ζ ≤ b
c−ζ
c−b b ≤ ζ ≤ c

0 otherwise

(2)

Definition 2. A fuzzy number x associates with a real value with α-level as

[x]α = {a ∈ R : x(a) ≥ α} (3)

where 0 < α ≤ 1, x ∈ E.
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If x, y ∈ E, λ ∈ R, the fuzzy operations are as follows:
Sum,

[x⊕ y]α = [x]α + [y]α = [xα + yα, x̄α + ȳα] (4)

subtract,

[x⊖ y]α = [x]α − [y]α = [xα − yα, x̄α − ȳα] (5)

or multiply,

zα ≤ [x⊙ y]α ≤ zαor[x⊙ y]α = A (zα, zα) (6)

where zα = xαy1 + x1yα − x1y1, zα = x̄αȳ1 + x̄1ȳα − x̄1ȳ1, and α ∈ [0, 1].

Therefore, [x]0 = x+ ={ζ ∈ R, x(ζ) > 0}. Since α ∈ [0, 1], [x]α is a bounded
interval such that xα ≤ [x]α ≤ x̄α. The α-level of x between xα and x̄α is given
as

[x]α = A (xα, x̄α) (7)

3 Numerical techniques for solving fuzzy equations

In most cases, the analytical solution for FEs may not be found. Instead of using
analytical methods that are not suitable for solving FEs and DFEs, numerical
methods are proposed to solve these equations. In this section, we describe three
numerical methods that are among the most important techniques.

3.1 Newton method

In 1671, Isaac Newton introduced a novel algorithm [32] for solving a polynomial
equation which was demonstrated on the basis of an example as x3−2x−5 = 0.
To obtain a precise root of the mentioned equation, initially, a starting value
should be assumed, here x ≈ 2. By assuming x = 2 + q and substituting it into
the original equation, the result is obtained as q3 + 6q2 + 10q − 1 = 0. As q
is presumed to be minute, q3 + 6q2 is neglected in comparison with 10q − 1.
The previous equation generates q ≈ 0.1, so a superior approximation of the
root is x ≈ 2.1. The repetition of this process is feasible and q = 0.1 + a is
extracted. The substitution gives a3+6.3a2+11.23a+0.061 = 0, henceforth a ≈
−0.061/11.23 = −0.0054..., so a novel approximation of the root is x ≈ 2.0946.
It is the requirement to repeat the process till the expected number of digits is
achieved. In his methodology, Newton did not explicitly utilize the concept of
the derivative, he just applied it on polynomial equations.

In [33] Newton’s methodology is proposed for fuzzy nonlinear equations in
lieu of standard analytical methodologies, as they are not appropriate every-
where. The primary intention is to extract a solution for fuzzy nonlinear equa-
tion G(x) = b. Primarily the cited researchers have mentioned fuzzy nonlinear
equation in parametric form as illustrated below{

G(xα, xα) = bα

G(xα, xα) = b
α
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so they resolved it by utilizing Newton’s methodology. Also, the convergence of
the method is proved.

Newton’s method is relatively expensive, since the calculation of the Hessian
on the first iteration is needed. Accordingly, the analytic expression for the sec-
ond derivative is often complicated or intractable, requiring a lot of computation.

3.2 Genetic algorithm method

A genetic algorithm is shown to solve the FE, R(x) = y in [34], where x and y
are considered real fuzzy numbers sampled with k, it is also considered that R is
a fuzzy function relying on x. The motivation is to obtain an adequate value of
the fuzzy argument x in such a way that the calculated value of the polynomial,
R(x), is very adjacent to the provided objective value y. The genetic algorithm
presented uses a different demonstration of the fuzzy numbers that allows the
implementation of simple genetic operators. The algorithm is self-sufficient to
find multiple solutions associated with FEs. Unfortunately, no method has been
used for an identical problem involved in the area of neural networks that can
be taken over. Due to the different discrete criteria of fuzzy arithmetic, the only
realistic approach to solve this problem is to design a dedicated genetic algorithm
[35].

In [36] genetic algorithm is used for resolving non-linear equations of the form
g(x) = 0, where x and g(x) may be real, complex or vector quantities. At first
g(x) = 0 is transformed into a minimization problem, then genetic algorithm is
applied for finding the minimum. The method is extended for systems of non-
linear equations.

The genetic algorithm represents the most consistent results in terms of ac-
curacy and convergence but it is expensive in computational costs.

3.3 Neural network method

Approximation methods such as fuzzy neural networks are also effective tools to
overcome the limitations of the other numerical methods. The major advantage
of using fuzzy neural networks is training a large amount of data sets, quick
convergence and high accuracy.

In [37] an architecture related to the fuzzy neural network is suggested in
order to obtain a real root at par with fuzzy polynomials which is illustrated in
the form mentioned below

C1x+ ...+ Cnx
n = C0 (8)

where x ∈ ℜ as well as C0, C1, ..., Cn are fuzzy numbers. A learning algorithm
associated with the cost function in order to adjust the crisp weights has been
suggested. The methodology mentioned in [37] has drawbacks. It is solely capable
of extracting a crisp solution of fuzzy polynomials, and this neural network
cannot extract a fuzzy solution.
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In [38] an architecture of fuzzy neural networks is suggested for solving dual
fuzzy polynomial equations. A learning algorithm of fuzzy weights of two-layer
feedforward fuzzy neural networks is used whose input-output relations are de-
fined by extension principle.

4 Numerical techniques for solving fuzzy differential
equations

Analytical methods can not be applied for solving FDEs. Therefore, numerical
methods become essential, especially for PDEs. In this section three different
important methods are described.

4.1 Taylor method

In [39], an approach on the basis of the 2nd Taylor technique is illustrated in
order to resolve linear as well as nonlinear FDEs. The convergence order of the
Euler technique in [40] is O(h), whereas the convergence order in [39] is O(h2).
The better solutions are extracted by [39].

In [41] the Taylor method of order p is utilized for solving FDEs. The algo-
rithm is explained by resolving some linear and nonlinear fuzzy Cauchy problems.
The convergence order of the Taylor method is O(hp).

The drawback of Taylor series technique is the computation of higher deriva-
tives, that by increasing the order the calculation process becomes increasingly
complicated. However, Runge-Kutta method is generally considered to be the
most effective one-step technique.

4.2 Runge-Kutta method

In [42] an effective s-stage Runge-Kutta technique is employed for extracting the
numerical solution of FDE. In that paper, Runge-Kutta method is applied for
a more generalized category of problems and a convergence definition as well
as error definitions are given at par with FDEs theory. Furthermore, conver-
gence related to s-stage Runge-Kutta method is analyzed. This technique, when
compared with developed Euler technique, performs superior. Although Euler
technique is suitable, it is embedded with the disadvantage that, when analyz-
ing the convergence of Euler technique [40], the authors generally investigate on
the convergence of the ODEs system which happens while resolving numerically.

In [43] a numerical algorithm in order to solve linear as well as nonlinear
fuzzy ODE on the basis of Seikkala derivative of fuzzy process is suggested. A
numerical technique on the basis of the Runge-Kutta methodology of order five
is elaborately investigated and this is carried on by going through an analysis of
complete error. This technique with O(h5) outperforms than improved Euler’s
technique with O(h2).

In [44] a numerical algorithm in order to solve FDEs on the basis of Seikkala’s
derivative of a fuzzy process is suggested. A numerical technique based on a



6 Raheleh Jafari et al.

Runge-Kutta Nystrom technique of order three is employed for solving the ini-
tial value problem, also it is illustrated that this methodology is superior in
comparison with the Euler method by considering the convergence order of Eu-
ler methodology (O(h)) as well as Runge-Kutta Nystrom methodology (O(h3)).

The major advantage of Runge-Kutta technique is that it is easy to apply.
The main drawback of Runge-Kutta technique is that it needs more computer
time when compared with multi-step techniques, also it does not easily yield
desirable global approximations of the truncation error. The neural network is
comparatively simple as well as computational rapid. Due to the superior esti-
mation abilities of neural networks, the estimated solution for FDE is extremely
near to the exact solution.

4.3 Neural network method

In [45] a modified technique is proposed in order to obtain the numerical solutions
of fuzzy PDEs by utilizing fuzzy artificial neural networks. Utilizing modified
fuzzy neural network ensures that the training points get selected over an open
interval without training the network in the range of first and end points. This
novel technique is on the basis of substituting each x in the training set (where
x ∈ [a, b]) by the polynomial Q(x) = ϵ(x + 1) in such a manner that Q(x) ∈
(a, b), by selecting an appropriate ϵ ∈ (0, 1). Also, it can be suggested that the
proposed methodology can deal efficiently with all types of fuzzy PDEs as well
as to generate precise estimated solution entirely for all domain and not only
at the training set. Hence, one can utilize the interpolation methodologies (to
be mentioned as curve fitting methodology) in order to obtain the estimated
solution at points in the midst of the training points or at points outside the
training set.

In [46] a novel technique on the basis of learning algorithm associated with
the fuzzy neural network as well as Taylor series is laid down for extracting
numerical solution of FDEs. A fuzzy neural network on the basis of the semi-
Taylor series (in concerned to the function ex) for the first (and second) order
FDE is utilized. It is possible to use the same approach for solving high or-
der FDE as well as fuzzy PDE. A fuzzy trial solution related to the fuzzy initial
value problem is presented as an addition of two parts. The primary part suffices
the fuzzy initial condition and it includes Taylor series, also contains no fuzzy
adjustable parameters. The secondary part includes a feed-forward fuzzy neu-
ral network having fuzzy adjustable parameters (the fuzzy weights). Therefore
by development, the fuzzy primary condition is sufficed and the training of the
fuzzy network is carried out in order to suffice the FDE. The preciseness of this
technique relies on the Taylor series that is selected for the trial solution. This
selection is not distinct, hence, the preciseness is different from one problem to
another problem. The suggested technique gives more precise estimations. Supe-
rior outcomes will be possible if more neurons or more training points are used.
In addition, after resolving a FDE the solution is achievable at any arbitrary
point in the training interval (even in the midst of training points).
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5 Numerical Examples

In this section, two application examples are established to compare the perfor-
mance of numerical techniques in order to estimate the solution of DFEs and
FDEs.

Example 1. The water tank system contains two inlet valves V1, V2, as well as
two outlet valves V3, V4, see Figure 1. The areas of the valves are uncertain as the
triangle function (2), C1 = G(0.021, 0.023, 0.024), C2 = G(0.008, 0.018, 0.038),
C3 = G(0.012, 0.013, 0.015), C4 = G(0.038, 0.058, 0.068). The velocities of the
flow (controlled by the valves) are g1 = ( ϑ

10 )e
ϑ, g2 = ϑcos(Πϑ), g3 = cos(Πϑ

8 ),

g4 = ϑ
2 . If the outlet flow is aimed to be z = (4.088, 6.336, 36.399), what is the

quantity of the control variable ϑ? The mass balance of the tank is [47]:

C1 C2 

C4 C3 

k1 k2 

k4 k3 

k 

V1 V2 

V4 V3 

Fig. 1. Water tank system

ρC1g1 ⊕ ρC2g2 = ρC3g3 ⊕ ρC4g4 ⊕ z

where ρ is considered to be the density of the water. The exact solution is taken
to be ϑ0 = 2 [47]. To approximate the solution, we use three popular methods:
Newton method, Genetic algorithm method, and Neural network method. The
errors of these methods are shown in Table 1. It can be seen that all three meth-
ods can approximate the solutions of the dual fuzzy equations. Neural network
method is more suitable for solving these kind of equations. In this table k is
the number of iterations. The small approximation errors can be obtained by
making the number of iteration larger. By increasing the number of iterations
the estimated errors of the neural networks based algorithm are less than the
other methods. Neural network method is more robust when compared with the
other methods.

Example 2. The vibration mass system displayed in Fig. 2 is modeled by,

d

dt
u(t) =

c

m
x(t), u(t) =

d

dt
x(t) (9)
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Table 1. Approximation errors

k Newton Genetic algorithm Neural network

1 0.18635 0.33463 0.43967

2 0.29602 0.24791 0.32375

3 0.36175 0.13012 0.21763
...

...
...

...

119 0.07982 0.04563 0.00316

120 0.07526 0.03952 0.00286

where the spring constant is considered to be c = 1, as well as the mass is m =
(0.73, 1.123). If the initial position is taken to be x(0) = (0.73 + 0.23α, 1.123 −
0.123α), α ∈ [0, 1] , so the exact solutions of (9) are [48],

x(t, α) =
[
(0.73 + 0.23α)et, (1.123− 0.123α)et

]
(10)

where t ∈ [0, 1]. In order to estimate the solution (10), we utilize three popu-

Equilibrium 

position 

x(t) 

+ 

Fig. 2. Vibration mass

lar techniques: Taylor technique, Runge-Kutta technique, and Neural network
technique. The errors related to these techniques are demonstrated in Table
2. Corresponding solution plots are displayed in Fig. 3. All three methods are
suitable for resolving the FDEs. The leaning procedure of the neural network
method is more quickly than the other methods. Also, the robustness of neural
network method is better when compared with the other methods.

6 Conclusion

In this review, recent numerical methods are considered to solve FEs. It addresses
numerical methodologies to solve FEs, DFEs, FDEs, and PFDEs. Research in
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Table 2. Approximation errors

α Taylor Runge-Kutta Neural network

0 [0.0604,0.1088] [0.0407,0.0889] [0.0209,0.0606]

0.2 [0.0701,0.1191] [0.0609,0.1092] [0.0308,0.0704]

0.4 [0.0511,0.0993] [0.0211,0.0692] [0.0102,0.0501]

0.6 [0.0403,0.0880] [0.0211,0.0691] [0.0011,0.0409]

0.8 [0.1009,0.1493] [0.0712,0.1192] [0.0512,0.0913]

1 [0.1104,0.1104] [0.0806,0.0806] [0.0602,0.0602]

1.8 2 2.2 2.4 2.6 2.8 3 3.2 
0 

0.2 

0.4 

0.6 

0.8 

1 

A
lp

ha
 

Plots of solution 

Taylor  

Runge- Kutta  

 

Neural network 

Exact 

Fig. 3. Comparison plot of three popular methods and the exact solution

this field continues to grow with new types of numerical methods and new strate-
gies. Emphasis is given to current developments in the solving strategies in the
last two decades, which demonstrates their significant improvements.
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