42 research outputs found

    The Canadian Federation of Earth Sciences Scientific Statement on Climate Change – Its Impacts in Canada, and the Critical Role of Earth Scientists in Mitigation and Adaptation

    Get PDF
    The Canadian Federation of Earth Sciences (CFES) has issued this statement to summarize the science, effects, and implications of climate change. We highlight the role of Earth scientists in documenting and mitigating climate change, and in managing and adapting to its consequences in Canada. CFES is the coordinated voice of Canada’s Earth Sciences community with 14 member organizations representing some 15,000 geoscientists. Our members are drawn from academia, industry, education, and government. The mission of CFES is to ensure decision makers and the public understand the contributions of Earth Science to Canadian society and the economy.  Climate change has become a national and global priority for all levels of government. The geological record shows us that the global climate has changed throughout Earth’s history, but the current rates of change are almost unprecedented. Over the last 70 years, levels of common greenhouse gases (GHGs) in the atmosphere have steadily increased. Carbon dioxide (CO2) concentration is now 418 parts per million — its highest of the last three million years. The chemical (isotopic) composition of carbon in the atmosphere indicates the increase in GHGs is due to burning fossil fuels. GHGs absorb energy emitted from Earth’s surface and re-radiate it back, warming the lower levels of the atmosphere. Climatic adjustments that have recently occurred are, in practical terms, irreversible, but further change can be mitigated by lowering emissions of GHGs.  Climate change is amplified by three important Earth system processes and effects. First, as the climate warms evaporation increases, raising atmospheric concentrations of water vapour, itself a GHG — and adding to warming. Second, loss of ice cover from the polar ice sheets and glaciers exposes larger areas of land and open water — leading to greater absorption of heat from the sun. Third, thawing of near-surface permafrost releases additional GHGs (primarily CO2 and methane) during decay of organic matter previously preserved frozen in the ground. Some impacts of climate change are incremental and steadily occurring, such as melting of glaciers and ice sheets, with consequent sea level rise. Others are intermittent, such as extreme weather events, like hurricanes — but are becoming more frequent. Summer water shortages are increasingly common in western Canada as mountain snowpacks melt earlier and summer river flows decline. In northern Canada, warming and thawing of near-surface permafrost has led to deterioration of infrastructure and increased costs for buildings that now require chilled foundations. Other consequences of unchecked climate change include increased coastal erosion, increases in the number and size of wildfires, and reduction in winter road access to isolated northern communities. Reductions in net GHG emissions are urgently required to mitigate the many effects of further climate change. Industrial and public works development projects must now assess the effects of climate change in their planning, design, and management. Cities, municipalities, and rural communities need to plan new residential development carefully to avoid enhanced risk of flooding, coastal erosion, or wildfire.  Earth Science knowledge and expertise is integral to exploration and development of new metals and Earth materials required for a carbon-neutral future, and in the capture and storage of CO2 within the Earth. Earth Science is also central to society’s adaptation to new climatic regimes and reduction of risks. This includes anticipation, assessment, and management of extreme events, development of new standards and guidelines for geotechnical and engineering practice, and revision to regulations that consider climate change. Geoscientists also have an important role in the education of students and the public on the reasons for necessary action. Canada is uniquely positioned with its strong global geoscientific leadership, its vast landmass, and its northern terrain to effectively leverage research activities around climate change. Geoscience tools and geoscientists’ skills will be integral to Canada’s preparation for climate change.La Fédération canadienne des sciences de la Terre (FCST) a publié ce communiqué pour résumer la science, les effets et les implications des changements climatiques. Nous soulignons le rôle des scientifiques en science de la Terre dans la documentation et l'atténuation des changements climatiques, ainsi que dans la gestion de leurs conséquences et la création de mesures d'adaptation au Canada. La FCST est la voix coordonnée de la communauté canadienne des sciences de la Terre avec 14 organisations membres représentant environ 15 000 géoscientifiques. Nos membres sont issus du milieu universitaire, de l'industrie, de l'éducation et du gouvernement. La mission de la FCST est de s'assurer que les décideurs et le public comprennent les contributions des sciences de la Terre à la société canadienne et à l'économie.  Les changements climatiques sont devenus une priorité nationale et mondiale à tous les niveaux de gouvernement. Les archives géologiques nous montrent que le climat mondial a changé tout au long de l'histoire de la Terre, mais les taux de changement actuels sont presque sans précédent. Au cours des 70 dernières années, les niveaux de gaz à effet de serre (GES) communs dans l'atmosphère n'ont cessé d'augmenter. La concentration de dioxyde de carbone (CO2) est maintenant de 418 parties par million - son plus haut niveau des trois derniers millions d'années. La composition chimique (isotopique) du carbone dans l'atmosphère indique que l'augmentation des GES est due à la combustion de combustibles fossiles. Les GES absorbent l'énergie émise par la surface de la Terre et la réfléchissent, réchauffant les niveaux inférieurs de l'atmosphère. Les modifications climatiques qui se sont produits récemment sont, concrètement, irréversibles, mais les changements additionnels peuvent être atténués en réduisant les émissions de GES.  Les changements climatiques sont amplifiés par trois processus et effets importants du système terrestre. Premièrement, à mesure que le climat se réchauffe, l'évaporation augmente, ce qui augmente les concentrations atmosphériques de vapeur d'eau, elle-même un GES, et contribue au réchauffement. Deuxièmement, la perte de la couverture de glace des calottes glaciaires polaires et des glaciers expose de plus grandes superficies de terre et d'eau libre, ce qui entraîne une plus grande absorption de la chaleur du soleil. Troisièmement, le dégel du pergélisol proche de la surface libère des GES supplémentaires (principalement du CO2 et du méthane) lors de la décomposition de la matière organique jusqu’alors préservée gelée dans le sol. Certains impacts des changements climatiques sont progressifs et se produisent régulièrement, comme la fonte des glaciers et des calottes glaciaires, avec pour conséquence une élévation du niveau de la mer. D'autres sont intermittents, comme les événements météorologiques extrêmes, tels que les ouragans, mais deviennent de plus en plus fréquents. Les pénuries d'eau en été sont de plus en plus courantes dans l'ouest du Canada, car le manteau neigeux des montagnes fond plus tôt et le débit des rivières en été diminue. Dans le nord du Canada, le réchauffement et le dégel du pergélisol proche de la surface ont entraîné une détérioration des infrastructures et une augmentation des coûts des bâtiments qui nécessitent maintenant des fondations réfrigérées. Les autres conséquences des changements climatiques incontrôlés comprennent l'augmentation de l'érosion côtière, l'augmentation du nombre et de la taille des incendies de forêt et la réduction de l'accès aux routes d’hiver aux collectivités isolées du Nord. Des réductions des émissions nettes de GES sont nécessaires de toute urgence pour atténuer les nombreux effets de nouveaux changements climatiques. Les projets de développement industriel et de travaux publics doivent désormais évaluer les effets des changements climatiques dans leur planification, leur conception et leur gestion. Les villes, les municipalités et les communautés rurales doivent planifier soigneusement les nouveaux développements résidentiels pour éviter les risques accrus d'inondation, d'érosion côtière ou d'incendie de forêt.  Les connaissances et l'expertise en sciences de la Terre font partie intégrante de l'exploration et du développement de nouveaux métaux et matériaux terrestres requis pour un avenir neutre en carbone, ainsi que dans la capture et la séquestration du CO2 dans la Terre. Les sciences de la Terre sont également au cœur de l'adaptation de la société aux nouveaux régimes climatiques et de la réduction des risques. Cela comprend l'anticipation, l'évaluation et la gestion des événements extrêmes, l'élaboration de nouvelles normes et directives pour les pratiques géotechniques et d'ingénierie, et la révision des réglementations qui tient compte des changements climatiques. Les géoscientifiques ont également un rôle important dans l'éducation des étudiants et du public sur le fondement des mesures nécessaires. Le Canada occupe une position unique grâce à son solide leadership géoscientifique mondial, sa vaste étendue et son territoire nordique pour tirer efficacement parti des activités de recherche sur les changements climatiques. Les outils géoscientifiques et les compétences des géoscientifiques feront partie intégrante de la préparation du Canada aux changements climatiques

    Simulating impacts on UK air quality from net-zero forest planting scenarios

    Get PDF
    The UK proposes additional bioenergy plantations and afforestation as part of measures to meet net-zero greenhouse gas emissions, but species and locations are not yet decided. Different tree species emit varying amounts of isoprene and monoterpene volatile organic compounds that are precursors to ozone and secondary organic aerosol (SOA) formation, the latter of which is a component of PM2.5. The forest canopy also acts as a depositional sink for air pollutants. All these processes are meteorologically influenced. We present here a first step at coupling information on tree species planting suitability and other planting constraints with data on UK-specific BVOC emission rates and tree canopy data to simulate via the WRF-EMEP4UK high spatial resolution atmospheric chemistry transport model the impact on UK air quality of four potential scenarios. Our ‘maximum planting’ scenarios are based on planting areas where yields are predicted to be ≥50 % of the maximum from the Ecological Site Classification Decision Support System (ESC-DSS) for Eucalyptus gunnii, hybrid aspen (Populus tremula), Italian alder (Alnus cordata) and Sitka spruce (Picea sitchensis). The additional areas of forest in our scenarios are 2.0 to 2.7 times current suggestions for new bioenergy and afforestation landcover in the UK. Our planting scenarios increase UK annual mean surface ozone concentrations by 1.0 ppb or 3 % relative to the baseline landcover for the highest BVOC emitting species (e.g., E. gunni). Increases in ozone reach 2 ppb in summer when BVOC emissions are greatest. In contrast, all the additional planting scenarios lead to reductions in UK annual mean PM2.5 – ranging from -0.2 µg m-3 (-3 %) for Sitka spruce to -0.5 µg m-3 (-7 %) for aspen – revealing that PM2.5 deposition to the additional forest canopy area more than offsets additional SOA formation. Relative decreases in annual mean PM2.5 are greater than the relative increases in annual mean ozone. Reductions in PM2.5 are least in summer, coinciding with the period of maximum monoterpene emissions. Although only a first step in evaluating the impact of increased forest plantation on UK air quality, our study demonstrates the need for locally relevant data on landcover suitability, emissions and meteorology in model simulations

    Small phytoplankton dominate western North Atlantic biomass

    Get PDF
    The North Atlantic phytoplankton spring bloom is the pinnacle in an annual cycle that is driven by physical, chemical, and biological seasonality. Despite its important contributions to the global carbon cycle, transitions in plankton community composition between the winter and spring have been scarcely examined in the North Atlantic. Phytoplankton composition in early winter was compared with latitudinal transects that captured the subsequent spring bloom climax. Amplicon sequence variants (ASVs), imaging flow cytometry, and flow-cytometry provided a synoptic view of phytoplankton diversity. Phytoplankton communities were not uniform across the sites studied, but rather mapped with apparent fidelity onto subpolar- and subtropical-influenced water masses of the North Atlantic. At most stations, cells < 20-µm diameter were the main contributors to phytoplankton biomass. Winter phytoplankton communities were dominated by cyanobacteria and pico-phytoeukaryotes. These transitioned to more diverse and dynamic spring communities in which pico- and nano-phytoeukaryotes, including many prasinophyte algae, dominated. Diatoms, which are often assumed to be the dominant phytoplankton in blooms, were contributors but not the major component of biomass. We show that diverse, small phytoplankton taxa are unexpectedly common in the western North Atlantic and that regional influences play a large role in modulating community transitions during the seasonal progression of blooms

    Co-producing across organizational boundaries: promoting asylum seeker integration in Scotland

    Get PDF
    This paper questions whether asylum seeker integration is promoted through inter-organisational relationships between non-profit and voluntary organisations (NPVOs) and government agencies. It focuses particularly on the role of NPVOs in service delivery (co-management) and in the delivery and planning of public services (co-governance). It presents a research study on the public services provided to asylum seekers in Glasgow and asks the following questions: What role do NPVOs play in the planning and delivery of public services? When planning and delivering public services, to what extent do NPVOs work across organisational boundaries and what kind of relationships exist? And in practice, what makes inter-organisational relationships work? This paper offers new empirical evidence and also contributes to the theoretical debate around the integration of asylum seekers

    Impact of efalizumab on patient-reported outcomes in high-need psoriasis patients: results of the international, randomized, placebo-controlled Phase III Clinical Experience Acquired with Raptiva (CLEAR) trial [NCT00256139]

    Get PDF
    BACKGROUND: Chronic psoriasis can negatively affect patients' lives. Assessing the impact of treatment on different aspects of a patient's health-related quality of life (HRQOL) is therefore important and relevant in trials of anti-psoriasis agents. The recombinant humanized IgG(1 )monoclonal antibody efalizumab targets multiple T-cell-dependent steps in the immunopathogenesis of psoriasis. Efalizumab has demonstrated safety and efficacy in several clinical trials, and improves patients' quality of life. Objective: To evaluate the impact of efalizumab on HRQOL and other patient-reported outcomes in patients with moderate to severe plaque psoriasis, including a large cohort of High-Need patients for whom at least 2 other systemic therapies were unsuitable because of lack of efficacy, intolerance, or contraindication. METHODS: A total of 793 patients were randomized in a 2:1 ratio to receive efalizumab 1 mg/kg/wk (n = 529) or placebo (n = 264) for 12 weeks. The study population included 526 High-Need patients (342 efalizumab, 184 placebo). The treatment was evaluated by patients using the HRQOL assessment tools Short Form-36 (SF-36) and Dermatology Life Quality Index (DLQI). Other patient-reported assessments included the Psoriasis Symptom Assessment (PSA), a visual analog scale (VAS) for itching, and the Patient's Global Psoriasis Assessment (PGPA). RESULTS: Efalizumab was associated with improvements at Week 12 from baseline in patient-reported outcomes, both in the total study population and in the High-Need cohort. Among all efalizumab-treated patients, the DLQI improved by 5.7 points from baseline to Week 12, relative to an improvement of 2.3 points for placebo patients (P < .001). Corresponding improvements in DLQI in the High-Need cohort were 5.4 points for efalizumab compared to 2.3 for placebo (P < .001). Improvements from baseline on the SF-36, PSA, PGPA, and itching VAS at Week 12 were also significantly greater in efalizumab-treated patients than for placebo. CONCLUSION: A 12-week course of efalizumab improved HRQOL and other patient-reported outcomes in patients with moderate to severe plaque psoriasis. The benefits of efalizumab therapy in High-Need patients were similar to those observed in the total study population, indicating that the beneficial impact of efalizumab on QOL is consistent regardless of disease severity, prior therapy, or contraindications to previous therapies

    Crop pests and predators exhibit inconsistent responses to surrounding landscape composition

    Get PDF
    The idea that noncrop habitat enhances pest control and represents a win–win opportunity to conserve biodiversity and bolster yields has emerged as an agroecological paradigm. However, while noncrop habitat in landscapes surrounding farms sometimes benefits pest predators, natural enemy responses remain heterogeneous across studies and effects on pests are inconclusive. The observed heterogeneity in species responses to noncrop habitat may be biological in origin or could result from variation in how habitat and biocontrol are measured. Here, we use a pest-control database encompassing 132 studies and 6,759 sites worldwide to model natural enemy and pest abundances, predation rates, and crop damage as a function of landscape composition. Our results showed that although landscape composition explained significant variation within studies, pest and enemy abundances, predation rates, crop damage, and yields each exhibited different responses across studies, sometimes increasing and sometimes decreasing in landscapes with more noncrop habitat but overall showing no consistent trend. Thus, models that used landscape-composition variables to predict pest-control dynamics demonstrated little potential to explain variation across studies, though prediction did improve when comparing studies with similar crop and landscape features. Overall, our work shows that surrounding noncrop habitat does not consistently improve pest management, meaning habitat conservation may bolster production in some systems and depress yields in others. Future efforts to develop tools that inform farmers when habitat conservation truly represents a win–win would benefit from increased understanding of how landscape effects are modulated by local farm management and the biology of pests and their enemies

    The Canadian Federation of Earth Sciences Scientific Statement on Climate Change – Its Impacts in Canada, and the Critical Role of Earth Scientists in Mitigation and Adaptation

    Get PDF
    The Canadian Federation of Earth Sciences (CFES) has issued this statement to summarize the science, effects, and implications of climate change. We highlight the role of Earth scientists in documenting and mitigating climate change, and in managing and adapting to its consequences in Canada. CFES is the coordinated voice of Canada’s Earth Sciences community with 14 member organizations representing some 15,000 geoscientists. Our members are drawn from academia, industry, education, and government. The mission of CFES is to ensure decision makers and the public understand the contributions of Earth Science to Canadian society and the economy.Climate change has become a national and global priority for all levels of government. The geological record shows us that the global climate has changed throughout Earth’s history, but the current rates of change are almost unprecedented. Over the last 70 years, levels of common greenhouse gases (GHGs) in the atmosphere have steadily increased. Carbon dioxide (CO2) concentration is now 418 parts per million — its highest of the last three million years. The chemical (isotopic) composition of carbon in the atmosphere indicates the increase in GHGs is due to burning fossil fuels. GHGs absorb energy emitted from Earth’s surface and re-radiate it back, warming the lower levels of the atmosphere. Climatic adjustments that have recently occurred are, in practical terms, irreversible, but further change can be mitigated by lowering emissions of GHGs.Climate change is amplified by three important Earth system processes and effects. First, as the climate warms evaporation increases, raising atmospheric concentrations of water vapour, itself a GHG — and adding to warming. Second, loss of ice cover from the polar ice sheets and glaciers exposes larger areas of land and open water — leading to greater absorption of heat from the sun. Third, thawing of near-surface permafrost releases additional GHGs (primarily CO2 and methane) during decay of organic matter previously preserved frozen in the ground. Some impacts of climate change are incremental and steadily occurring, such as melting of glaciers and ice sheets, with consequent sea level rise. Others are intermittent, such as extreme weather events, like hurricanes — but are becoming more frequent. Summer water shortages are increasingly common in western Canada as mountain snowpacks melt earlier and summer river flows decline. In northern Canada, warming and thawing of near-surface permafrost has led to deterioration of infrastructure and increased costs for buildings that now require chilled foundations. Other consequences of unchecked climate change include increased coastal erosion, increases in the number and size of wildfires, and reduction in winter road access to isolated northern communities. Reductions in net GHG emissions are urgently required to mitigate the many effects of further climate change. Industrial and public works development projects must now assess the effects of climate change in their planning, design, and management. Cities, municipalities, and rural communities need to plan new residential development carefully to avoid enhanced risk of flooding, coastal erosion, or wildfire.Earth Science knowledge and expertise is integral to exploration and development of new metals and Earth materials required for a carbon-neutral future, and in the capture and storage of CO2 within the Earth. Earth Science is also central to society’s adaptation to new climatic regimes and reduction of risks. This includes anticipation, assessment, and management of extreme events, development of new standards and guidelines for geotechnical and engineering practice, and revision to regulations that consider climate change. Geoscientists also have an important role in the education of students and the public on the reasons for necessary action. Canada is uniquely positioned with its strong global geoscientific leadership, its vast landmass, and its northern terrain to effectively leverage research activities around climate change. Geoscience tools and geoscientists’ skills will be integral to Canada’s preparation for climate change.La Fédération canadienne des sciences de la Terre (FCST) a publié ce communiqué pour résumer la science, les effets et les implications des changements climatiques. Nous soulignons le rôle des scientifiques en science de la Terre dans la documentation et l'atténuation des changements climatiques, ainsi que dans la gestion de leurs conséquences et la création de mesures d'adaptation au Canada. La FCST est la voix coordonnée de la communauté canadienne des sciences de la Terre avec 14 organisations membres représentant environ 15 000 géoscientifiques. Nos membres sont issus du milieu universitaire, de l'industrie, de l'éducation et du gouvernement. La mission de la FCST est de s'assurer que les décideurs et le public comprennent les contributions des sciences de la Terre à la société canadienne et à l'économie.Les changements climatiques sont devenus une priorité nationale et mondiale à tous les niveaux de gouvernement. Les archives géologiques nous montrent que le climat mondial a changé tout au long de l'histoire de la Terre, mais les taux de changement actuels sont presque sans précédent. Au cours des 70 dernières années, les niveaux de gaz à effet de serre (GES) communs dans l'atmosphère n'ont cessé d'augmenter. La concentration de dioxyde de carbone (CO2) est maintenant de 418 parties par million - son plus haut niveau des trois derniers millions d'années. La composition chimique (isotopique) du carbone dans l'atmosphère indique que l'augmentation des GES est due à la combustion de combustibles fossiles. Les GES absorbent l'énergie émise par la surface de la Terre et la réfléchissent, réchauffant les niveaux inférieurs de l'atmosphère. Les modifications climatiques qui se sont produits récemment sont, concrètement, irréversibles, mais les changements additionnels peuvent être atténués en réduisant les émissions de GES.Les changements climatiques sont amplifiés par trois processus et effets importants du système terrestre. Premièrement, à mesure que le climat se réchauffe, l'évaporation augmente, ce qui augmente les concentrations atmosphériques de vapeur d'eau, elle-même un GES, et contribue au réchauffement. Deuxièmement, la perte de la couverture de glace des calottes glaciaires polaires et des glaciers expose de plus grandes superficies de terre et d'eau libre, ce qui entraîne une plus grande absorption de la chaleur du soleil. Troisièmement, le dégel du pergélisol proche de la surface libère des GES supplémentaires (principalement du CO2 et du méthane) lors de la décomposition de la matière organique jusqu’alors préservée gelée dans le sol. Certains impacts des changements climatiques sont progressifs et se produisent régulièrement, comme la fonte des glaciers et des calottes glaciaires, avec pour conséquence une élévation du niveau de la mer. D'autres sont intermittents, comme les événements météorologiques extrêmes, tels que les ouragans, mais deviennent de plus en plus fréquents. Les pénuries d'eau en été sont de plus en plus courantes dans l'ouest du Canada, car le manteau neigeux des montagnes fond plus tôt et le débit des rivières en été diminue. Dans le nord du Canada, le réchauffement et le dégel du pergélisol proche de la surface ont entraîné une détérioration des infrastructures et une augmentation des coûts des bâtiments qui nécessitent maintenant des fondations réfrigérées. Les autres conséquences des changements climatiques incontrôlés comprennent l'augmentation de l'érosion côtière, l'augmentation du nombre et de la taille des incendies de forêt et la réduction de l'accès aux routes d’hiver aux collectivités isolées du Nord. Des réductions des émissions nettes de GES sont nécessaires de toute urgence pour atténuer les nombreux effets de nouveaux changements climatiques. Les projets de développement industriel et de travaux publics doivent désormais évaluer les effets des changements climatiques dans leur planification, leur conception et leur gestion. Les villes, les municipalités et les communautés rurales doivent planifier soigneusement les nouveaux développements résidentiels pour éviter les risques accrus d'inondation, d'érosion côtière ou d'incendie de forêt.Les connaissances et l'expertise en sciences de la Terre font partie intégrante de l'exploration et du développement de nouveaux métaux et matériaux terrestres requis pour un avenir neutre en carbone, ainsi que dans la capture et la séquestration du CO2 dans la Terre. Les sciences de la Terre sont également au cœur de l'adaptation de la société aux nouveaux régimes climatiques et de la réduction des risques. Cela comprend l'anticipation, l'évaluation et la gestion des événements extrêmes, l'élaboration de nouvelles normes et directives pour les pratiques géotechniques et d'ingénierie, et la révision des réglementations qui tient compte des changements climatiques. Les géoscientifiques ont également un rôle important dans l'éducation des étudiants et du public sur le fondement des mesures nécessaires. Le Canada occupe une position unique grâce à son solide leadership géoscientifique mondial, sa vaste étendue et son territoire nordique pour tirer efficacement parti des activités de recherche sur les changements climatiques. Les outils géoscientifiques et les compétences des géoscientifiques feront partie intégrante de la préparation du Canada aux changements climatiques
    corecore