942 research outputs found

    An interview study of pregnant women who were provided with indoor air quality measurements of second hand smoke to help them quit smoking

    Get PDF
    Background:  Maternal smoking can cause health complications in pregnancy. Particulate matter (PM2.5) metrics applied to second hand smoke (SHS) concentrations provide indoor air quality (IAQ) measurements and have been used to promote smoking behaviour change among parents of young children. Here, we present the qualitative results from a study designed to use IAQ measurements to help pregnant women who smoke to quit smoking.  Methods:  We used IAQ measurements in two centres (Aberdeen and Coventry) using two interventions: 1. In Aberdeen, women made IAQ measurements in their homes following routine ultrasound scan; 2. In Coventry, IAQ measurements were added to a home-based Stop Smoking in Pregnancy Service. All women were invited to give a qualitative interview to explore acceptability and feasibility of IAQ measurements to help with smoking cessation. A case study approach using grounded theory was applied to develop a typology of pregnant women who smoke.  Results:  There were 39 women recruited (18 in Aberdeen and 21 in Coventry) and qualitative interviews were undertaken with nine of those women. Diverse accounts of smoking behaviours and experiences of participation were given. Many women reported changes to their smoking behaviours during pregnancy. Most women wanted to make further changes to their own behaviour, but could not commit or felt constrained by living with a partner or family members who smoked. Others could not envisage quitting. Using themes emerging from the interviews, we constructed a typology where women were classified as follows: 'champions for change'; 'keen, but not committed'; and 'can't quit, won't quit'. Three women reported quitting smoking alongside participation in our study.  Conclusions:  Pregnant women who smoke remain hard to engage,. Although providing IAQ measurements does not obviously improve quit rates, it can support changes in smoking behaviour in/around the home for some individuals. Our typology might offer a useful assessment tool for midwives

    Ground-based aerosol characterization during the South American Biomass Burning Analysis (SAMBBA) field experiment

    Get PDF
    This paper investigates the physical and chemical characteristics of aerosols at ground level at a site heavily impacted by biomass burning. The site is located near Porto Velho, Rondônia, in the southwestern part of the Brazilian Amazon rainforest, and was selected for the deployment of a large suite of instruments, among them an Aerosol Chemical Speciation Monitor. Our measurements were made during the South American Biomass Burning Analysis (SAMBBA) field experiment, which consisted of a combination of aircraft and ground-based measurements over Brazil, aimed to investigate the impacts of biomass burning emissions on climate, air quality, and numerical weather prediction over South America. The campaign took place during the dry season and the transition to the wet season in September/October 2012. During most of the campaign, the site was impacted by regional biomass burning pollution (average CO mixing ratio of 0.6 ppm), occasionally superimposed by intense (up to 2 ppm of CO), freshly emitted biomass burning plumes. Aerosol number concentrations ranged from ∼ 1000 cm−3 to peaks of up to 35 000 cm−3 (during biomass burning (BB) events, corresponding to an average submicron mass mean concentrations of 13.7 µg m−3 and peak concentrations close to 100 µg m−3 . Organic aerosol strongly dominated the submicron non-refractory composition, with an average concentration of 11.4 µg m−3 . The inorganic species, NH4, SO4, NO3, and Cl, were observed, on average, at concentrations of 0.44, 0.34, 0.19, and 0.01 µg m−3 , respectively. Equivalent black carbon (BCe) ranged from 0.2 to 5.5 µg m−3 , with an average concentration of 1.3 µg m−3 . During BB peaks, organics accounted for over 90 % of total mass (submicron non-refractory plus BCe), among the highest values described in the literature. We examined the ageing of biomass burning organic aerosol (BBOA) using the changes in the H : C and O : C ratios, and found that throughout most of the aerosol processing (O : C ∼= 0.25 to O : C ∼= 0.6), no remarkable change is observed in the H : C ratio (∼ 1.35). Such a result contrasts strongly with previous observations of chemical ageing of both urban and Amazonian biogenic aerosols. At higher levels of processing (O : C > 0.6), the H : C ratio changes with a H : C/O : C slope of −0.5, possibly due to the development of a combination of BB (H : C/O : C slope = 0) and biogenic (H : C/O : C slope = −1) organic aerosol (OA). An analysis of the 1OA/1CO mass ratios yields very little enhancement in the OA loading with atmospheric processing, consistent with previous observations. These results indicate that negligible secondary organic aerosol (SOA) formation occurs throughout the observed BB plume Published by Copernicus Publications on behalf of the European Geosciences Union. 12070 J. Brito et al.: Ground-based aerosol characterization during SAMBBA processing, or that SOA formation is almost entirely balanced by OA volatilization. Positive matrix factorization (PMF) of the organic aerosol spectra resulted in three factors: fresh BBOA, aged BBOA, and low-volatility oxygenated organic aerosol (LV-OOA). Analysis of the diurnal patterns and correlation with external markers indicates that during the first part of the campaign, OA concentrations are impacted by local fire plumes with some chemical processing occurring in the near-surface layer. During the second part of the campaign, long-range transport of BB plumes above the surface layer, as well as potential SOAs formed aloft, dominates OA concentrations at our ground-based sampling site. This manuscript describes the first ground-based deployment of the aerosol mass spectrometry at a site heavily impacted by biomass burning in the Amazon region, allowing a deeper understanding of aerosol life cycle in this important ecosystem.This work was supported by the Foundation for Research Support of the State of São Paulo (FAPESP, projects 2012/14437-9 and 2013/05014-0), CNPq project 475735- 2012-9, INCT Amazonia, and Natural Environment Research Council (NERC) project NE/J010073/1. We thank A. Ribeiro, A. L. Loureiro, F. Morais, F. Jorge, and S. Morais for technical and logistics support. We thank the National Institute of Meteorology for providing valuable meteorological data. We gratefully acknowledge S. Hacon, J. Silva, and W. Bastos for support in the successful operation of the sampling site

    Observations of SN 2017ein Reveal Shock Breakout Emission and A Massive Progenitor Star for a Type Ic Supernova

    Full text link
    We present optical and ultraviolet observations of nearby type Ic supernova SN 2017ein as well as detailed analysis of its progenitor properties from both the early-time observations and the prediscovery Hubble Space Telescope (HST) images. The optical light curves started from within one day to \sim275 days after explosion, and optical spectra range from \sim2 days to \sim90 days after explosion. Compared to other normal SNe Ic like SN 2007gr and SN 2013ge, \mbox{SN 2017ein} seems to have more prominent C{\footnotesize II} absorption and higher expansion velocities in early phases, suggestive of relatively lower ejecta mass. The earliest photometry obtained for \mbox{SN 2017ein} show indications of shock cooling. The best-fit obtained by including a shock cooling component gives an estimate of the envelope mass as \sim0.02 M_{\odot} and stellar radius as 8±\pm4 R_{\odot}. Examining the pre-explosion images taken with the HST WFPC2, we find that the SN position coincides with a luminous and blue point-like source, with an extinction-corrected absolute magnitude of MV_V\sim-8.2 mag and MI_I\sim-7.7 mag.Comparisons of the observations to the theoretical models indicate that the counterpart source was either a single WR star or a binary with whose members had high initial masses, or a young compact star cluster. To further distinguish between different scenarios requires revisiting the site of the progenitor with HST after the SN fades away.Comment: 28 pages, 19 figures; accepted for publication in The Astrophysical Journa

    Direct Introduction of a Dimesitylboryl Group Using Base-Mediated Substitution of Aryl Halides with Silyldimesitylborane

    Get PDF
    The first dimesitylboryl substitution of aryl halides with a silylborane bearing a dimesitylboryl group in the presence of alkali-metal alkoxides is described. The reactions of aryl bromides or iodides with Ph2MeSi-BMes(2) and Na(OtBu) afforded the desired aryl dimesitylboranes in good to high yields and with high borylation/silylation ratios. Selective reaction of the sterically less-hindered C-Br bond of dibromoarenes provided monoborylated products. This reaction was used to rapidly construct a D-pi-A aryl dimesityl borane with a non-symmetrical biphenyl spacer

    The escape of ionising radiation from high-redshift dwarf galaxies

    Full text link
    The UV escape fraction from high-redshift galaxies plays a key role in models of cosmic reionisation. Because it is currently not possible to deduce the escape fractions during the epoch of reionisation from observations, we have to rely on numerical simulations. Our aim is to better constrain the escape fraction from high-redshift dwarf galaxies, as these are the most likely sources responsible for reionising the Universe. We employ a N-body/SPH method that includes realistic prescriptions for the physical processes that are important for the evolution of dwarf galaxies. These models are post-processed with radiative transfer to determine the escape fraction of ionising radiation. We perform a parameter study to assess the influence of the spin parameter, gas fraction and formation redshift of the galaxy and study the importance of numerical parameters as resolution, source distribution and local gas clearing. We find that the UV escape fraction from high-redshift dwarf galaxies that have formed a rotationally supported disc lie between 1e-5 and 0.1. The mass and angular momentum of the galaxy are the most important parameters that determine the escape fraction. We compare our results to previous work and discuss the uncertainties of our models. The low escape fraction we find for high-redshift dwarf galaxies is balanced by their high stellar content, resulting in an efficiency parameter for stars that is only marginally lower than the values found by semi-analytic models of reionisation. We therefore conclude that dwarf galaxies play an important role in cosmic reionisation also after the initial starburst phase, when the gas has settled into a disc.Comment: 19 pages, 14 figures. Accepted for publication in A&

    Suizidprävention: Vorgehensweisen und Wirksamkeit

    Get PDF
    According to official statistics every year 11,000 persons in Germany die from suicide. 20 years ago nearly 19,000 suicides were registered. What are the causes for this decrease? Do suicide preventive measures contribute to the reduction of suicide rates? Different universal prevention strategies ( e. g. restriction of access to means) and selective approaches ( programs for special high-risk groups; e. g. patients after attempted suicide) are presented and discussed regarding their preventive value. In most cases it is hardly possible to scientifically prove the efficacy of suicide prevention strategies. Neither the role of psychosocial interventions nor the impact of psychotropic agents can be sufficiently quantified. Due to various methodological reasons ( e. g. small sample sizes and the lack of randomization), interpretation of the data is difficult. In terms of a comprehensive approach of suicide prevention a combination of different activities should be most adequate in the long run

    Evaluation of diffusion models in breast cancer.

    Get PDF
    Purpose The purpose of this study is to investigate whether the microvascular pseudodiffusion effects resulting with non-monoexponential behavior are present in breast cancer, taking into account tumor spatial heterogeneity. Additionally, methodological factors affecting the signal in low and high diffusion-sensitizing gradient ranges were explored in phantom studies.Methods The effect of eddy currents and accuracy of b-value determination using a multiple b-value diffusion-weighted MR imaging sequence were investigated in test objects. Diffusion model selection and noise were then investigated in volunteers (n = 5) and breast tumor patients (n = 21) using the Bayesian information criterion.Results 54.3% of lesion voxels were best fitted by a monoexponential, 26.2% by a stretched-exponential, and 19.5% by a biexponential intravoxel incoherent motion (IVIM) model. High correlation (0.92) was observed between diffusion coefficients calculated using mono- and stretched-exponential models and moderate (0.59) between monoexponential and IVIM (medians: 0.96/0.84/0.72 × 10(-3) mm(2)/s, respectively). Distortion due to eddy currents depended on the direction of the diffusion gradient and displacement varied between 1 and 6 mm for high b-value images. Shift in the apparent diffusion coefficient due to intrinsic field gradients was compensated for by averaging diffusion data obtained from opposite directions.Conclusions Pseudodiffusion and intravoxel heterogeneity effects were not observed in approximately half of breast cancer and normal tissue voxels. This result indicates that stretched and IVIM models should be utilized in regional analysis rather than global tumor assessment. Cross terms between diffusion-sensitization gradients and other imaging or susceptibility-related gradients are relevant in clinical protocols, supporting the use of geometric averaging of diffusion-weighted images acquired with diffusion-sensitization gradients in opposite directions

    Multi-centre reproducibility of diffusion MRI parameters for clinical sequences in the brain.

    Get PDF
    The purpose of this work was to assess the reproducibility of diffusion imaging, and in particular the apparent diffusion coefficient (ADC), intra-voxel incoherent motion (IVIM) parameters and diffusion tensor imaging (DTI) parameters, across multiple centres using clinically available protocols with limited harmonization between sequences. An ice-water phantom and nine healthy volunteers were scanned across fives centres on eight scanners (four Siemens 1.5T, four Philips 3T). The mean ADC, IVIM parameters (diffusion coefficient D and perfusion fraction f) and DTI parameters (mean diffusivity MD and fractional anisotropy FA), were measured in grey matter, white matter and specific brain sub-regions. A mixed effect model was used to measure the intra- and inter-scanner coefficient of variation (CV) for each of the five parameters. ADC, D, MD and FA had a good intra- and inter-scanner reproducibility in both grey and white matter, with a CV ranging between 1% and 7.4%; mean 2.6%. Other brain regions also showed high levels of reproducibility except for small structures such as the choroid plexus. The IVIM parameter f had a higher intra-scanner CV of 8.4% and inter-scanner CV of 24.8%. No major difference in the inter-scanner CV for ADC, D, MD and FA was observed when analysing the 1.5T and 3T scanners separately. ADC, D, MD and FA all showed good intra-scanner reproducibility, with the inter-scanner reproducibility being comparable or faring slightly worse, suggesting that using data from multiple scanners does not have an adverse effect compared with using data from the same scanner. The IVIM parameter f had a poorer inter-scanner CV when scanners of different field strengths were combined, and the parameter was also affected by the scan acquisition resolution. This study shows that the majority of diffusion MRI derived parameters are robust across 1.5T and 3T scanners and suitable for use in multi-centre clinical studies and trials

    A simple, reproducible method for monitoring the treatment of tumours using dynamic contrast-enhanced MR imaging

    Get PDF
    Dynamic contrast-enhanced MR imaging (DCE-MRI) may act as a biomarker for successful cancer therapy. Simple, reproducible techniques may widen this application. This paper demonstrates a single slice imaging technique. The image acquisition is performed in less than 500 ms making it relatively insensitive to respiratory motion. Data from phantom studies and a reproducibility study in solid human tumours are presented. The reproducibility study showed a coefficient of variation (CoV) of 19.1% for Ktrans and 15.8% for the initial area under the contrast enhancement curve (IAUC). This was improved to 16 and 13.9% if tumours of diameter less than 3 cm were excluded. The individual repeatability (the range within which individual measurements are expected to fall) was 30.6% for Ktrans and 26.5% for IAUC for tumours greater than 3 cm diameter. This approach to DCE–MRI image acquisition can be performed with standard clinical scanners, and data analysis is straightforward. For treatment trials with 10 patients in a cohort, the CoV implies that the method would be sensitive to a treatment effect of greater than 18%. The individual repeatability is well inside the 40% change shown to be important in clinical studies using this DCE–MRI technique
    corecore