257 research outputs found

    The TAFs in the HAT

    Get PDF

    High-throughput sequencing reveals a simple model of nucleosome energetics

    Full text link
    We use nucleosome maps obtained by high-throughput sequencing to study sequence specificity of intrinsic histone-DNA interactions. In contrast with previous approaches, we employ an analogy between a classical one-dimensional fluid of finite-size particles in an arbitrary external potential and arrays of DNA-bound histone octamers. We derive an analytical solution to infer free energies of nucleosome formation directly from nucleosome occupancies measured in high-throughput experiments. The sequence-specific part of free energies is then captured by fitting them to a sum of energies assigned to individual nucleotide motifs. We have developed hierarchical models of increasing complexity and spatial resolution, establishing that nucleosome occupancies can be explained by systematic differences in mono- and dinucleotide content between nucleosomal and linker DNA sequences, with periodic dinucleotide distributions and longer sequence motifs playing a secondary role. Furthermore, similar sequence signatures are exhibited by control experiments in which genomic DNA is either sonicated or digested with micrococcal nuclease in the absence of nucleosomes, making it possible that current predictions based on high-throughput nucleosome positioning maps are biased by experimental artifacts.Comment: 36 pages, 13 figure

    SIRT7 Links H3K18 Deacetylation to Maintenance of Oncogenic Transformation

    Get PDF
    Sirtuin proteins regulate diverse cellular pathways that influence genomic stability, metabolism, and ageing. SIRT7 is a mammalian sirtuin whose biochemical activity, molecular targets, and physiologic functions have been unclear. Here we show that SIRT7 is an NAD+^+-dependent H3K18Ac (acetylated lysine 18 of histone H3) deacetylase that stabilizes the transformed state of cancer cells. Genome-wide binding studies reveal that SIRT7 binds to promoters of a specific set of gene targets, where it deacetylates H3K18Ac and promotes transcriptional repression. The spectrum of SIRT7 target genes is defined in part by its interaction with the cancer-associated ETS transcription factor ELK4, and comprises numerous genes with links to tumour suppression. Notably, selective hypoacetylation of H3K18Ac has been linked to oncogenic transformation, and in patients is associated with aggressive tumour phenotypes and poor prognosis. We find that deacetylation of H3K18Ac by SIRT7 is necessary for maintaining essential features of human cancer cells, including anchorage-independent growth and escape from contact inhibition. Moreover, SIRT7 is necessary for a global hypoacetylation of H3K18Ac associated with cellular transformation by the viral oncoprotein E1A. Finally, SIRT7 depletion markedly reduces the tumourigenicity of human cancer cell xenografts in mice. Together, our work establishes SIRT7 as a highly selective H3K18Ac deacetylase and demonstrates a pivotal role for SIRT7 in chromatin regulation, cellular transformation programs, and tumour formation in vivo

    Improved annotation of 3' untranslated regions and complex loci by combination of strand-specific direct RNA sequencing, RNA-seq and ESTs

    Get PDF
    The reference annotations made for a genome sequence provide the framework for all subsequent analyses of the genome. Correct annotation is particularly important when interpreting the results of RNA-seq experiments where short sequence reads are mapped against the genome and assigned to genes according to the annotation. Inconsistencies in annotations between the reference and the experimental system can lead to incorrect interpretation of the effect on RNA expression of an experimental treatment or mutation in the system under study. Until recently, the genome-wide annotation of 3-prime untranslated regions received less attention than coding regions and the delineation of intron/exon boundaries. In this paper, data produced for samples in Human, Chicken and A. thaliana by the novel single-molecule, strand-specific, Direct RNA Sequencing technology from Helicos Biosciences which locates 3-prime polyadenylation sites to within +/- 2 nt, were combined with archival EST and RNA-Seq data. Nine examples are illustrated where this combination of data allowed: (1) gene and 3-prime UTR re-annotation (including extension of one 3-prime UTR by 5.9 kb); (2) disentangling of gene expression in complex regions; (3) clearer interpretation of small RNA expression and (4) identification of novel genes. While the specific examples displayed here may become obsolete as genome sequences and their annotations are refined, the principles laid out in this paper will be of general use both to those annotating genomes and those seeking to interpret existing publically available annotations in the context of their own experimental dataComment: 44 pages, 9 figure

    tRNA biology in the omics era: Stress signalling dynamics and cancer progression.

    Get PDF
    Recent years have seen a burst in the number of studies investigating tRNA biology. With the transition from a gene-centred to a genome-centred perspective, tRNAs and other RNA polymerase III transcripts surfaced as active regulators of normal cell physiology and disease. Novel strategies removing some of the hurdles that prevent quantitative tRNA profiling revealed that the differential exploitation of the tRNA pool critically affects the ability of the cell to balance protein homeostasis during normal and stress conditions. Furthermore, growing evidence indicates that the adaptation of tRNA synthesis to cellular dynamics can influence translation and mRNA stability to drive carcinogenesis and other pathological disorders. This review explores the contribution given by genomics, transcriptomics and epitranscriptomics to the discovery of emerging tRNA functions, and gives insights into some of the technical challenges that still limit our understanding of the RNA polymerase III transcriptional machinery

    NF-Y recruitment of TFIID, multiple interactions with histone fold TAF(II)s

    Get PDF
    The nuclear factor y (NF-Y) trimer and TFIID contain histone fold subunits, and their binding to the CCAAT and Initiator elements of the major histocompatibility complex class II Ea promoter is required for transcriptional activation. Using agarose-electrophoretic mobility shift assay we found that NF-Y increases the affinity of holo-TFIID for Ea in a CCAAT- and Inr-dependent manner. We began to dissect the interplay between NF-Y- and TBP-associated factors PO1II (TAF(II)s)-containing histone fold domains in protein-protein interactions and transfections. hTAF(II)20, hTAF(II)28, and hTAF(II)18-hTAF(II)28 bind to the NF-Y B-NF-YC histone fold dimer; hTAF(II)80 and hTAF(II)31-hTAF(II)80 interact with the trimer but not with the NF-YB-NF-YC dimer. The histone fold alpha2 helix of hTAF(II)80 is not required for NF-Y association, as determined by interactions with the naturally occurring splice variant hTAF(II)80delta. Expression of hTAF(II)28 and hTAF(II)18 in mouse cells significantly and specifically reduced NF-Y activation in GAL4-based experiments, whereas hTAF,120 and hTAF(II)135 increased it. These results indicate that NF-Y (i) recruits purified holo-TFIID in vitro and (ii) can associate multiple TAF(II)s, potentially accommodating different core promoter architectures

    Genetically tagged TRE5-A retrotransposons reveal high amplification rates and authentic target site preference in the Dictyostelium discoideum genome

    Get PDF
    Retrotransposons contribute significantly to the evolution of eukaryotic genomes. They replicate by producing DNA copies of their own RNA, which are integrated at new locations in the host cell genome. In the gene-dense genome of the social amoeba Dictyostelium discoideum, retrotransposon TRE5-A avoids insertional mutagenesis by targeting the transcription factor (TF) IIIC/IIIB complex and integrating ∼50 bp upstream of tRNA genes. We generated synthetic TRE5-A retrotransposons (TRE5-Absr) that were tagged with a selection marker that conferred resistance to blasticidin after a complete retrotransposition cycle. We found that the TRE5-Absr elements were efficiently mobilized in trans by proteins expressed from the endogenous TRE5-A population found in D. discoideum cells. ORF1 protein translated from TRE5-Absr elements significantly enhanced retrotransposition. We observed that the 5′ untranslated region of TRE5-A could be replaced by an unrelated promoter, whereas the 3′ untranslated region of TRE5-A was essential for retrotransposition. A predicted secondary structure in the RNA of the 3′ untranslated region of TRE5-A may be involved in the retrotransposition process. The TRE5-Absr elements were capable of identifying authentic integration targets in vivo, including formerly unnoticed, putative binding sites for TFIIIC on the extrachromosomal DNA element that carries the ribosomal RNA genes

    Nucleolar Association and Transcriptional Inhibition through 5S rDNA in Mammals

    Get PDF
    Changes in the spatial positioning of genes within the mammalian nucleus have been associated with transcriptional differences and thus have been hypothesized as a mode of regulation. In particular, the localization of genes to the nuclear and nucleolar peripheries is associated with transcriptional repression. However, the mechanistic basis, including the pertinent cis- elements, for such associations remains largely unknown. Here, we provide evidence that demonstrates a 119 bp 5S rDNA can influence nucleolar association in mammals. We found that integration of transgenes with 5S rDNA significantly increases the association of the host region with the nucleolus, and their degree of association correlates strongly with repression of a linked reporter gene. We further show that this mechanism may be functional in endogenous contexts: pseudogenes derived from 5S rDNA show biased conservation of their internal transcription factor binding sites and, in some cases, are frequently associated with the nucleolus. These results demonstrate that 5S rDNA sequence can significantly contribute to the positioning of a locus and suggest a novel, endogenous mechanism for nuclear organization in mammals

    Dyskerin, tRNA genes, and condensin tether pericentric chromatin to the spindle axis in mitosis

    Get PDF
    Condensin is enriched in the pericentromere of budding yeast chromosomes where it is constrained to the spindle axis in metaphase. Pericentric condensin contributes to chromatin compaction, resistance to microtubule-based spindle forces, and spindle length and variance regulation. Condensin is clustered along the spindle axis in a heterogeneous fashion. We demonstrate that pericentric enrichment of condensin is mediated by interactions with transfer ribonucleic acid (tRNA) genes and their regulatory factors. This recruitment is important for generating axial tension on the pericentromere and coordinating movement between pericentromeres from different chromosomes. The interaction between condensin and tRNA genes in the pericentromere reveals a feature of yeast centromeres that has profound implications for the function and evolution of mitotic segregation mechanisms
    corecore