12 research outputs found

    Structure of the Endonuclease Domain of MutL: Unlicensed to Cut

    Get PDF
    DNA mismatch repair corrects errors that have escaped polymerase proofreading, increasing replication fidelity 100- to 1000-fold in organisms ranging from bacteria to humans. The MutL protein plays a central role in mismatch repair by coordinating multiple protein-protein interactions that signal strand removal upon mismatch recognition by MutS. Here we report the crystal structure of the endonuclease domain of Bacillus subtilis MutL. The structure is organized in dimerization and regulatory subdomains connected by a helical lever spanning the conserved endonuclease motif. Additional conserved motifs cluster around the lever and define a Zn2+-binding site that is critical for MutL function in vivo. The structure unveils a powerful inhibitory mechanism to prevent undesired nicking of newly replicated DNA and allows us to propose a model describing how the interaction with MutS and the processivity clamp could license the endonuclease activity of MutL. The structure also provides a molecular framework to propose and test additional roles of MutL in mismatch repair.American Cancer Society (Research Professor)Natural Sciences and Engineering Research Council of Canada (NSERC scholarship)National Institutes of Health (U.S.) (CA21615)National Institutes of Health (U.S.) (GM45190)Natural Sciences and Engineering Research Council of Canada (NSERC, 288295)Deutsche Forschungsgemeinschaft (FR-1495/4-1)University of Michigan (Start-up funds

    Coupling of Human DNA Excision Repair and the DNA Damage Checkpoint in a Defined in Vitro System

    Get PDF
    DNA repair and DNA damage checkpoints work in concert to help maintain genomic integrity. In vivo data suggest that these two global responses to DNA damage are coupled. It has been proposed that the canonical 30 nucleotide single-stranded DNA gap generated by nucleotide excision repair is the signal that activates the ATR-mediated DNA damage checkpoint response and that the signal is enhanced by gap enlargement by EXO1 (exonuclease 1) 5′ to 3′ exonuclease activity. Here we have used purified core nucleotide excision repair factors (RPA, XPA, XPC, TFIIH, XPG, and XPF-ERCC1), core DNA damage checkpoint proteins (ATR-ATRIP, TopBP1, RPA), and DNA damaged by a UV-mimetic agent to analyze the basic steps of DNA damage checkpoint response in a biochemically defined system. We find that checkpoint signaling as measured by phosphorylation of target proteins by the ATR kinase requires enlargement of the excision gap generated by the excision repair system by the 5′ to 3′ exonuclease activity of EXO1. We conclude that, in addition to damaged DNA, RPA, XPA, XPC, TFIIH, XPG, XPF-ERCC1, ATR-ATRIP, TopBP1, and EXO1 constitute the minimum essential set of factors for ATR-mediated DNA damage checkpoint response

    Kinetic analysis of yersinia pestis DNA adenine methyltransferase activity using a hemimethylated molecular break light oligonucleotide

    Get PDF
    Background: DNA adenine methylation plays an important role in several critical bacterial processes including mismatchrepair, the timing of DNA replication and the transcriptional control of gene expression. The dependence of bacterial virulenceon DNA adenine methyltransferase (Dam) has led to the proposal that selective Dam inhibitors might function as broadspectrum antibiotics. Methodology/Principal Findings: herein we report the expression and purification of Yersinia pestisDam and the development of a continuous fluorescence based assay for DNA adenine methyltransferase activity that issuitable for determining the kinetic parameters of the enzyme and for high throughput screening against potential Daminhibitors. The assay utilised a hemimethylated break light oligonucleotide substrate containing a GATC methylation site.When this substrate was fully methylated by Dam, it became a substrate for the restriction enzyme DpnI, resulting inseparation of fluorophore (fluorescein) and quencher (dabcyl) and therefore an increase in fluorescence. The assays weremonitored in real time using a fluorescence microplate reader in 96 well format and were used for the kinetic characterisationof Yersinia pestis Dam, its substrates and the known Dam inhibitor, S-adenosylhomocysteine. The assay has been validated forhigh throughput screening, giving a Z-factor of 0.7160.07 indicating that it is a sensitive assay for the identification ofinhibitors. Conclusions/Significance: the assay is therefore suitable for high throughput screening for inhibitors of DNAadenine methyltransferases and the kinetic characterisation of the inhibitio

    Active Site Mutations in Mammalian DNA Polymerase δ Alter Accuracy and Replication Fork Progression*

    No full text
    DNA polymerase δ (pol δ) is one of the two main replicative polymerases in eukaryotes; it synthesizes the lagging DNA strand and also functions in DNA repair. In previous work, we demonstrated that heterozygous expression of the pol δ L604G variant in mice results in normal life span and no apparent phenotype, whereas a different substitution at the same position, L604K, is associated with shortened life span and accelerated carcinogenesis. Here, we report in vitro analysis of the homologous mutations at position Leu-606 in human pol δ. Four-subunit human pol δ variants that harbor or lack 3′ → 5′-exonucleolytic proofreading activity were purified from Escherichia coli. The pol δ L606G and L606K holoenzymes retain catalytic activity and processivity similar to that of wild type pol δ. pol δ L606G is highly error prone, incorporating single noncomplementary nucleotides at a high frequency during DNA synthesis, whereas pol δ L606K is extremely accurate, with a higher fidelity of single nucleotide incorporation by the active site than that of wild type pol δ. However, pol δ L606K is impaired in the bypass of DNA adducts, and the homologous variant in mouse embryonic fibroblasts results in a decreased rate of replication fork progression in vivo. These results indicate that different substitutions at a single active site residue in a eukaryotic polymerase can either increase or decrease the accuracy of synthesis relative to wild type and suggest that enhanced fidelity of base selection by a polymerase active site can result in impaired lesion bypass and delayed replication fork progression

    hMSH2 Recruits ATR to DNA Damage Sites for Activation during DNA Damage-induced Apoptosis*

    No full text
    DNA damage response (DDR) activates a complex signaling network that triggers DNA repair, cell cycle arrest, and/or cell death. Depending on the type and severity of DNA lesion, DDR is controlled by “master” regulators including ATM and ATR protein kinases. Cisplatin, a major chemotherapy drug that cross-links DNA, induces ATR-dependent DDR, resulting in apoptosis. However, it is unclear how ATR is activated. To identify the key regulators of ATR, we analyzed the proteins that associate with ATR after cisplatin treatment by blue native-PAGE and co-immunoprecipitation. The mismatch repair protein hMSH2 was found to be a major ATR-binding protein. Functionally, ATR activation and its recruitment to nuclear foci during cisplatin treatment were attenuated, and DNA damage signaling, involving Chk2, p53, and PUMA-α, was suppressed in hMSH2-deficient cells. ATR activation induced by the DNA methylating agent N-methyl-N-nitrosourea was also shown to be hMSH2-dependent. Intriguingly, hMSH2-mediated ATR recruitment and activation appeared independent of replication protein A, Rad17, and the Rad9-Hus1-Rad1 protein complex. Together the results support a hMSH2-dependent pathway of ATR activation and downstream Chk2/p53 signaling

    Structural, molecular and cellular functions of MSH2 and MSH6 during DNA mismatch repair, damage signaling and other noncanonical activities

    No full text
    corecore