289 research outputs found

    Involvement of the C terminus in intramolecular nitrogen channeling in glucosamine 6-phosphate synthase: evidence from a 1.6 å crystal structure of the isomerase domain

    Get PDF
    AbstractBackground: Glucosamine 6-phosphate synthase (GlmS) catalyses the first step in hexosamine metabolism, converting fructose-6P (6 phosphate) into glucosamine-6P using glutamine as a nitrogen source. GlmS is a bienzyme complex consisting of two domains that catalyse glutamine hydrolysis and sugar-phosphate isomerisation, respectively. Knowledge of the three-dimensional structure of GlmS is essential for understanding the general principles of catalysis by ketol isomerases and the mechanism of nitrogen transfer in glutamine amidotransferases.Results: The crystal structure of the isomerase domain of the Escherichia coli GlmS with the reaction product, glucosamine-6P, has been determined at 1.57 å resolution. It is comprised of two topologically identical subdomains, each of which is dominated by a nucleotide-binding motif of a flavodoxin type. The catalytic site is assembled by dimerisation of the protein.Conclusions: The isomerase active site of GlmS seems to be the result of evolution through gene duplication and subsequent dimerisation. Isomerisation of fructose-6P is likely to involve the formation of a Schiff base with Lys603 of the enzyme, the ring-opening step catalysed by His504, and the proton transfer from C1 to C2 of the substrate effected by Glu488. The highly conserved C-terminal fragment of the chain may play a key role in substrate binding, catalysis and communication with the glutaminase domain. The corresponding sequence pattern DXPXXLAK[SC]VT (in single-letter amino-acid code, where X is any amino acid and letters in brackets indicate that either serine or cysteine may take this position) may be considered as a fingerprint of GlmS

    Crystal structure of the YffB protein from Pseudomonas aeruginosa suggests a glutathione-dependent thiol reductase function

    Get PDF
    BACKGROUND: The yffB (PA3664) gene of Pseudomonas aeruginosa encodes an uncharacterized protein of 13 kDa molecular weight with a marginal sequence similarity to arsenate reductase from Escherichia coli. The crystal structure determination of YffB was undertaken as part of a structural genomics effort in order to assist with the functional assignment of the protein. RESULTS: The structure was determined at 1.0 Å resolution by single-wavelength anomalous diffraction. The fold is very similar to that of arsenate reductase, which is an extension of the thioredoxin fold. CONCLUSION: Given the conservation of the functionally important residues and the ability to bind glutathione, YffB is likely to function as a GSH-dependent thiol reductase

    Patterns of sedentary behaviour and cardiovascular health in children

    Full text link
     Children engaged in high levels of sedentary time, particularly during class and leisure time. Different types of screen behaviours and patterns of sitting time were adversely associated with cardiovascular health. Not all screen behaviours may be equal and the way sitting time is accumulated may be important to cardiovascular health

    Engineering of microheterogeneity-resistant p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens

    Get PDF
    AbstractBy site-directed mutagenesis, Cys-116 was converted to Ser-116 in p-hydroxybenzoate hydroxylase (EC 1.14.13.2) from Pseudomonas fluorescens. In contrast to wild-type enzyme, the C116S mutant is no longer susceptible to oxidation by hydrogen peroxide and shows no reactivity towards 5,5'-dithiobis(2-nitrobenzoate). Crystals of the C116S mutant are isomorphous with the crystal form of wild-type enzyme. A difference electron density confirms the mutation made

    Promoting crystallization of antibody–antigen complexes via microseed matrix screening

    Get PDF
    The application of microseed matrix screening to the crystallization of related antibodies in complex with IL-13 is described. Both self-seeding or cross-seeding helped promote nucleation and increase the hit rate

    Structural and functional analysis of the MutS C-terminal tetramerization domain

    Get PDF
    The Escherichia coli DNA mismatch repair (MMR) protein MutS is essential for the correction of DNA replication errors. In vitro, MutS exists in a dimer/tetramer equilibrium that is converted into a monomer/dimer equilibrium upon deletion of the C-terminal 53 amino acids. In vivo and in vitro data have shown that this C-terminal domain (CTD, residues 801–853) is critical for tetramerization and the function of MutS in MMR and anti-recombination. We report the expression, purification and analysis of the E.coli MutS-CTD. Secondary structure prediction and circular dichroism suggest that the CTD is folded, with an α-helical content of 30%. Based on sedimentation equilibrium and velocity analyses, MutS-CTD forms a tetramer of asymmetric shape. A single point mutation (D835R) abolishes tetramerization but not dimerization of both MutS-CTD and full-length MutS. Interestingly, the in vivo and in vitro MMR activity of MutS(CF/D835R) is diminished to a similar extent as a truncated MutS variant (MutS800, residues 1–800), which lacks the CTD. Moreover, the dimer-forming MutS(CF/D835R) has comparable DNA binding affinity with the tetramer-forming MutS, but is impaired in mismatch-dependent activation of MutH. Our data support the hypothesis that tetramerization of MutS is important but not essential for MutS function in MMR

    Insights into the Regulatory Characteristics of the Mycobacterial Dephosphocoenzyme A Kinase: Implications for the Universal CoA Biosynthesis Pathway

    Get PDF
    Being vastly different from the human counterpart, we suggest that the last enzyme of the Mycobacterium tuberculosis Coenzyme A biosynthetic pathway, dephosphocoenzyme A kinase (CoaE) could be a good anti-tubercular target. Here we describe detailed investigations into the regulatory features of the enzyme, affected via two mechanisms. Enzymatic activity is regulated by CTP which strongly binds the enzyme at a site overlapping that of the leading substrate, dephosphocoenzyme A (DCoA), thereby obscuring the binding site and limiting catalysis. The organism has evolved a second layer of regulation by employing a dynamic equilibrium between the trimeric and monomeric forms of CoaE as a means of regulating the effective concentration of active enzyme. We show that the monomer is the active form of the enzyme and the interplay between the regulator, CTP and the substrate, DCoA, affects enzymatic activity. Detailed kinetic data have been corroborated by size exclusion chromatography, dynamic light scattering, glutaraldehyde crosslinking, limited proteolysis and fluorescence investigations on the enzyme all of which corroborate the effects of the ligands on the enzyme oligomeric status and activity. Cysteine mutagenesis and the effects of reducing agents on mycobacterial CoaE oligomerization further validate that the latter is not cysteine-mediated or reduction-sensitive. These studies thus shed light on the novel regulatory features employed to regulate metabolite flow through the last step of a critical biosynthetic pathway by keeping the latter catalytically dormant till the need arises, the transition to the active form affected by a delicate crosstalk between an essential cellular metabolite (CTP) and the precursor to the pathway end-product (DCoA)

    Using Atomic Force Microscopy to Characterize the Conformational Properties of Proteins and Protein–DNA Complexes That Carry Out DNA Repair

    Get PDF
    Atomic force microscopy (AFM) is a scanning probe technique that allows visualization of single biomolecules and complexes deposited on a surface with nanometer resolution. AFM is a powerful tool for characterizing protein–protein and protein–DNA interactions. It can be used to capture snapshots of protein–DNA solution dynamics, which in turn, enables the characterization of the conformational properties of transient protein–protein and protein–DNA interactions. With AFM, it is possible to determine the stoichiometries and binding affinities of protein–protein and protein–DNA associations, the specificity of proteins binding to specific sites on DNA, and the conformations of the complexes. We describe methods to prepare and deposit samples, including surface treatments for optimal depositions, and how to quantitatively analyze images. We also discuss a new electrostatic force imaging technique called DREEM, which allows the visualization of the path of DNA within proteins in protein–DNA complexes. Collectively, these methods facilitate the development of comprehensive models of DNA repair and provide a broader understanding of all protein–protein and protein–nucleic acid interactions. The structural details gleaned from analysis of AFM images coupled with biochemistry provide vital information toward establishing the structure–function relationships that govern DNA repair processes
    corecore