476 research outputs found

    Cost Analysis of Medications Used in Upper Respiratory Tract Infections and Prescribing Patterns in University Sans Malaysia, Penang, Malaysia

    Get PDF
    Purpose: To conduct a cost analysis, a narrow cost-utility study, for upper respiratory tract infection medications in University Sans Malaysia’s clinics.Methods: Retrospective analysis was done for all medical claims of upper respiratory tract infections in the period 2008 - 2009. The study was done in the clinics under University Sains Malaysia. A total of 302 patients  suffering from upper respiratory tract infection were enrolled. Cost analysis of the pattern of antibiotic prescriptions for upper respiratory tract infections was done. For cost analysis, costs were calculated based on the acquisition cost from the perspective of the medical center (USM) as the provider.Results: The research results states that there were 90% among the patients were prescribed an antibiotic, 81 percent were prescribed an  antihistamine, 81 percent were prescribed an analgesic, and 21 percent were prescribed a mucolytic or an expectorant.Conclusion: In comparison to the previously revised researchers, the percentage of the prescribed antibiotics is very high which is unacceptable. A tremendous amount of expenditure and other adverse events can be avoided by halting this behavior. A local guideline for prescribing antibiotics and implementing the same is the need of the hour.Keywords: Prescribing patterns, Cost analysis, Upper respiratory tract,  Infections, Antibiotic

    Traffic Participants Detection and Classification Using YOLO Neural Network

    Get PDF
    One of the most important requirements for the next generation of traffic monitoring systems, autonomous driving technology, and Advanced Driving Assistance Systems (ADAS) is the detection and classification of traffic participants. Although in the areas of object detection and classification research, tremendous progress has been made, we focused on a specific task of detecting and classifying traffic participants from traffic scenarios. In our work, we have chosen a Deep Convolutional Neural Networks-based object detection algorithm – YOLOv4 (You Only Look Once Version 4) to detect and classify traffic participants accurately with fast speed. The main contribution of our work included: firstly, we built a custom image dataset of traffic participants (Car, Bus, Truck, Pedestrian, Traffic light, Traffic sign, Vehicle registration plate, Motorcycle, Ambulance, Bicycle wheel). After that, we run K-means clustering on the dataset to design anchor box, which is utilized to adapt to various small and medium scales. Finally, trained the network for the mentioned objects and tested our network in several driving conditions (daylight, low light, high traffic, foggy, rainy, etc.). We got the results reached a mean Average Precision (mAP) up to 65.95% and the speed was around 0.054 s

    Sorption comparison of trivalent chromium on various Ficus carica charcoal from tannery wastewater

    Get PDF
    Content: In this study, equipped charcoal of Ficus carica without impregnation, impregnated with potassium hydroxide (KOH), zinc chloride (ZnCl2) and phosphoric acid (H3PO4) was used for sorption comparison of trivalent chromium from tannery wastewater. The equipped charcoal is characterized before and after used by Fourier transforms infrared spectroscopy (FT-IR). The quantitative elemental analysis is performed of the charcoal using PGT Energy dispersive X-ray spectrometry (EDX). The trivalent chromium sorption efficacy of charcoal was examined investigating charcoal dose, contact time, and relative pH parameters. Batch sorption test revealed that Ficus carica charcoal without impregnation had the maximum sorption capacity of trivalent chromium as depicted Fig. 1a. At the same conditions, trivalent chromium sorption on the Ficus carica charcoal without impregnation, impregnated with potassium hydroxide, zinc chloride and phosphoric acid was 98.9%, 98.8%, 8.9 and 2.5%, respectively. It is noticeable that without impregnation charcoal has a higher sorption capacity. Conversely, impregnation with chemical required cost involvement, time-consuming, long process time, and safe. Fig.1b depicts a shift in the peak intensity which indicated the change of frequency in the functional groups of the charcoal due to chromium adsorption. It indicates various responsible functional groups for the removal of trivalent chromium through Ficus carica charcoal. The trivalent chromium removal efficiency with the Ficus carica charcoal without impregnation was achieved 98.9%. The study could be helpful to design the sorption of trivalent chromium from the tannery wastewater in-house prior to discharge. Take-Away: 1. Without impregnation, Ficus carica charcoal has a better trivalent chromium sorption capacity 2. Trivalent chromium sorption capacity was 98.9

    Automated Bangla sign language translation system for alphabets by means of MobileNet

    Get PDF
    Individuals with hearing and speaking impairment communicate using sign language. The movement of hand, body and expressions of face are the means by which the people, who are unable to hear and speak, can communicate. Bangla sign alphabets are formed with one or two hand movements. There are some features which differentiates the signs. To detect and recognize the signs, analyzing its shape and comparing its features is necessary. This paper aims to propose a model and build a computer systemthat can recognize Bangla Sign Lanugage alphabets and translate them to corresponding Bangla letters by means of deep convolutional neural network (CNN). CNN has been introduced in this model in form of a pre-trained model called “MobileNet” which produced an average accuracy of 95.71% in recognizing 36 Bangla Sign Language alphabets

    An enhanced void-crack based Rousselier damage model for ductile fracture with the XFEM

    Get PDF
    This work presents a modelling strategy for ductile fracture materials by implementing the Rousselier damage model with the extended finite element method (XFEM). The implicit integration scheme and consistent tangent modulus based on a radial return mapping algorithm for this constitutive model are developed by the user-defined material subroutine UMAT in ABAQUS/Standard. To enhance the modelling of the crack development in the materials, the XFEM is used that allows modelling of arbitrary discontinuities, where the mesh does not have to be aligned with the boundaries of material interfaces. This modelling strategy, so-called Rousselier-UMAT-XFEM (RuX) model, is proposed to connect both concepts, which gives an advantage in predicting the material behaviour of ductile material in terms of voids and crack relation. This is the first contribution where XFEM is used in ductile fracture analysis for micromechanical damage problems. The results indicate that the RuX model is a promising technique for predicting the void volume fraction damage and crack extension in ductile material, which shows a good agreement in terms of stress–strain and force–displacement relationships

    Mutational spectrum and phenotypic variability of Duchenne muscular dystrophy and related disorders in a Bangladeshi population

    Get PDF
    \ua9 2023, The Author(s).Duchenne muscular dystrophy (DMD) is a severe rare neuromuscular disorder caused by mutations in the X-linked dystrophin gene. Several mutations have been identified, yet the full mutational spectrum, and their phenotypic consequences, will require genotyping across different populations. To this end, we undertook the first detailed genotype and phenotype characterization of DMD in the Bangladeshi population. We investigated the rare mutational and phenotypic spectrum of the DMD gene in 36 DMD-suspected Bangladeshi participants using an economically affordable diagnostic strategy involving initial screening for exonic deletions in the DMD gene via multiplex PCR, followed by testing PCR-negative patients for mutations using whole exome sequencing. The deletion mapping identified two critical DMD gene hotspot regions (near proximal and distal ends, spanning exons 8–17 and exons 45–53, respectively) that comprised 95% (21/22) of the deletions for this population cohort. From our exome analysis, we detected two novel pathogenic hemizygous mutations in exons 21 and 42 of the DMD gene, and novel pathogenic recessive and loss of function variants in four additional genes: SGCD, DYSF, COL6A3, and DOK7. Our phenotypic analysis showed that DMD suspected participants presented diverse phenotypes according to the location of the mutation and which gene was impacted. Our study provides ethnicity specific new insights into both clinical and genetic aspects of DMD

    Variational Methods for Biomolecular Modeling

    Full text link
    Structure, function and dynamics of many biomolecular systems can be characterized by the energetic variational principle and the corresponding systems of partial differential equations (PDEs). This principle allows us to focus on the identification of essential energetic components, the optimal parametrization of energies, and the efficient computational implementation of energy variation or minimization. Given the fact that complex biomolecular systems are structurally non-uniform and their interactions occur through contact interfaces, their free energies are associated with various interfaces as well, such as solute-solvent interface, molecular binding interface, lipid domain interface, and membrane surfaces. This fact motivates the inclusion of interface geometry, particular its curvatures, to the parametrization of free energies. Applications of such interface geometry based energetic variational principles are illustrated through three concrete topics: the multiscale modeling of biomolecular electrostatics and solvation that includes the curvature energy of the molecular surface, the formation of microdomains on lipid membrane due to the geometric and molecular mechanics at the lipid interface, and the mean curvature driven protein localization on membrane surfaces. By further implicitly representing the interface using a phase field function over the entire domain, one can simulate the dynamics of the interface and the corresponding energy variation by evolving the phase field function, achieving significant reduction of the number of degrees of freedom and computational complexity. Strategies for improving the efficiency of computational implementations and for extending applications to coarse-graining or multiscale molecular simulations are outlined.Comment: 36 page

    Assessment of the embryotoxic potential of contaminated sediments using fish embryotoxicity tests for the river Buriganga, Dhaka, Bangladesh

    Get PDF
    Sediment samples from six different locations of Buriganga River following exposure to Zebrafish (Danio rerio) eggs and larvae displayed prominent effects on both whole sediments and sediment organic extracts. The acute and sublethal effects during 96 h exposure period included (i) a significant (P<0.05) increase in morality and abnormalities in zebrafish eggs and embryos; (ii) a significant (P<0.05) reduction in hatching success and heart rate; (iii) increased frequency of helical tail and lordosis after 96 h exposure to sediment extracts; (iv) developmental delay and yolk sac edema after exposed to whole sediments at 96h exposure period. Chemical analysis showed the increaseds concentrations of heavy metals (Zn, Cr, Cu, Pb, and Cd) in downstream (S1, S2, and S3) compared to upstream (S4, S5, and S6), where some ions such as Cd and Cr exceeded the Environmental Protection Agency’s Threshold Effect Level (EPA TEL). The current study delineates the contamination of extremely toxic compounds in the sediment of Buriganga River, which may initiate toxic effects on the early life stages of fish. Therefore, integrating zebrafish embryo toxicity tests may be crucial for evaluating the sediment quality of polluted rivers

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Assessment of Arthrobacter viscosus as reactive medium for forming permeable reactive biobarrier applied to PAHs remediation

    Get PDF
    Polycyclic aromatic hydrocarbons (PAHs) are significant environmental contaminants as they are present naturally as well as anthropogenically in soil, air and water. In spite of their low solubility, PAHs are spread to the environment, and they are present in surface water, industrial effluent or groundwater. Amongst all remediation technologies for treating groundwater contaminated with PAHs, the use of a permeable reactive biobarrier (PRBB) appears to be the most cost-effective, energy efficient, and environmentally sound approach. In this technology, the microorganisms are used as reactive medium to degrade or stabilize the contaminants. The main limits of this approach are that the microorganisms or consortium used for forming the PRBB should show adequate characteristics. They must be retained in the barrier-forming biofilm, and they should also have degradative ability for the target pollutants. The aim of the present work is to evaluate the viability of Arthrobacter viscosus as bioreactive medium for forming PRBB. Initially, the ability of A. viscosus to remove PAHs, benzo[a]anthracene 100 μM and phenanthrene 100 μM was evaluated operating in a batch bench-scale bioreactor. In both cases, total benzo[a]anthracene and phenanthrene removals were obtained after 7 and 3 days, respectively. Furthermore, the viability of the microorganisms was evaluated in the presence of chromium in a continuous mode. As a final point, the adhesion of A. viscosus to sepiolite forming a bioreactive material to build PRBB was demonstrated. In view of the attained results, it can be concluded that A. viscosus could be a suitable microorganism to form a bioreactive medium for PAHs remediation.This work has been supported by the Spanish Ministry of Economy and Competitiveness and FEDER Funds (Project CTM 2011-25389). Marta Pazos received financial support under the Ramon y Cajal programme and Marta Cobas under the final project master grant "Campus do Mar Knowledge in depth"
    corecore