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Abstract

This work presents a modelling strategy for ductile fracture materials by implementing the Rousselier

damage model with the extended finite element method (XFEM). The implicit integration scheme and

consistent tangent modulus (CTM) based on a radial return mapping algorithm for this constitutive

model are developed by the user-defined material subroutine UMAT in ABAQUS/ Standard. To enhance

the modelling of the crack development in the materials, the XFEM is used that allows modelling of

arbitrary discontinuities, where the mesh does not have to be aligned with the boundaries of material

interfaces. This modelling strategy, so-called Rousselier-UMAT-XFEM (RuX) model is proposed to

connect both concepts, which gives an advantage in predicting the material behaviour of ductile material

in terms of voids and crack relation. This is the first contribution where XFEM is used in ductile fracture

analysis for micromechanical damage problems. The results indicate that the RuX model is a promising

technique for predicting the void volume fraction damage and crack extension in ductile material, which

shows a good agreement in terms of stress-strain and force-displacement relationships.

Keywords:

Ductile fracture, Rousselier, XFEM, crack, void damage.

1. Introduction

Materials and structures do not only deform plastically but are also subjected to damage [1]. The

internal damage variable approach defines damage as the modification of the physical properties of

materials related to irreversible growth in micro-defects [2]. Three stages occur in ductile fracture [3, 4]:

firstly, voids initiate at material defects; next, the voids enlarge where the stress triaxiality is large

due to significant plastic deformation; finally, when the voids are large enough, they coalesce to form

microcracks from which a macroscopic crack develops leading to macroscopic failure.

By considering the ductile damage caused by plastic void growth, a micromechanics based model was

developed by Gurson [5] in 1977 and phenomenologically extended in 1984 by Tvergaard and Needleman

(the so-called as GTN model) [6]. Rousselier [7, 9] then extended this model further by characterizing

the thermodynamic state with the hardening and softening of the material into the internal variables in

the framework of the plastic potential.There has been considerable research interest in the constitutive

∗Corresponding author
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relations of void growth and damage for the modelling of ductile fracture. For example, Batisse et al.

[10] investigated the ductile fracture of A508 Cl 3 steel in different heat conditions based on the local

approach of fracture. In a separate study, Guo J. et al. [11] studied the ductile fracture of Al-alloy 5052

by implementing the modified Rousselier model for both tension and shear failure in a numerical and

experimental investigation. This was next followed by modelling ductile fracture over the entire range

of stress triaxiality based on classical void growth and the Mohr-Coulomb model for 6260 thin-walled

aluminium extrusion material [12].

For the extended study, it is interesting to explore the relationship of the knowledge of void ductile

damage with the crack development of the material [13]. The advanced numerical technique called

the Extended Finite Element Method (XFEM) is employed to model crack development, under the

assumptions of linear elastic fracture mechanics [14]. Since its introduction, XFEM has been developed

and used in many applications [15]. For example dynamic analysis of a stationary crack [16], failure

analysis of fibre metal laminates [17], modelling of quasi-static crack growth [18], and the analysis of

ductile damage model (Lemaitre model) for crack initiation and propagation [19].

The aim of this paper is to develop the connection between the micromechanical constitutive damage

model and crack development, in which the Rousselier-UMAT-XFEM (RuX) model is proposed and

used to represent an extensive analysis of ductile damage with a crack in the material. Indeed, this is

an exciting new achievement by implementing the XFEM solution in the constitutive Rousselier damage

model, which gives benefit in terms of the mathematical formulation to predict the void damage together

with the crack development of the ductile materials.

Accordingly, this paper is organized into five sections. An overview of the RuX model is given in

Section 2. Section 3 describes numerical frameworks, which is then followed by Section 4, which presents

the results and discussion of the study. Finally, Section 5 provides the concluding remarks of this paper.
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2. Overview of the RuX model

The RuX model solution has been proposed to predict the micromechanical damage of the material

with the existing crack development. The RuX model is a combined term of the Rousselier model

(constitutive damage model), UMAT subroutine (interface user-defined material) and XFEM solution

(crack development). Fig. 1 illustrates the flow-diagram, displaying the steps involved in the model.

Input model properties from 

the experimental reference 

data

Prediction of material 

damage behaviour based on 

constitutive equation

UMAT subroutine 

implemented within 

ABAQUS/ Standard module

RuX model processing

Output:

Formation of void damage, f 

with a ductile crack 

behaviour

Figure 1: The flow diagram of RuX model

The Rousselier model was implemented using an Abaqus UMAT subroutine to describe material

damage [29]. In the subroutine, the integration scheme utilizing the radial return algorithm and implicit

solution method are formulated in the finite element method, which is explained in the next section.

Then, to introduce the crack development in the material, the XFEM solution is proposed where the

crack initiation and evolution based on the damage of traction-separation law and displacement/ energy

release rate criterion are selected for characterizing the crack behaviour.

3. Numerical frameworks

3.1. Rousselier’s Damage Model in UMAT Subroutines

The Rousselier model is a pressure-dependent plasticity model, which was developed based on the

thermodynamics of the irreversible processes (TIP) framework [12]. In the TIP framework, the specific

free energy, ψ can be defined as [7]:

ψ
(

ǫeij , p, β
)

= ψe
(

ǫeij
)

+ ψp (εeq) + ψβ (β) (1)

where ψe is elastic strain energy, ψp and ψβ are the dissipated energy relating to the mechanisms of

hardening and softening, respectively.

The Rousselier plastic potential is used to estimate the onset of yielding of the material point [8]

which shows the presence of the void volume fraction, considered as an internal state variable in the

material constitutive model. Rousselier proposed the classical plastic potential as [7, 22, 23]:

φ =
q

ρ
−R (εeq) +B (β)De

(

−σm
ρσ1

)

(2)

3
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where q and σm are the von Mises equivalent stress and mean stress, respectively, D and σ1 are Rousselier

material parameters, ρ is a relative density, β is an internal variable describing damage and εeq is the

equivalent plastic strain which represents hardening of the material. With loading, the void volume

fraction evolves from the initial void volume fraction, f0, of the material. The void growth rate can be

obtained as:

ḟ = (1− f) ǫ̇pkk = (1− f) ǫ̇p (3)

where ε̇pkk is the component of the plastic strain tensor.

By considering a material which contains a void, the relationship between the relative density, ρ, and

f can be written as:

ρ =

(

1− f

1− f0

)

(4)

since the value of f0 is very small compared to unity, Eq. (4) becomes as [24]:

ρ = 1− f (5)

However, f0 is still be calculated in the formulation of this study, in order to see the influence of f0 in

the formation of void growth in the material. The function of B (β) in Eq. (2) can be written in terms

of the void volume fraction as:

B (β) = σ1f (6)

By substituting Eq. (5) and Eq. (6) into Eq. (2), the Rousselier plastic potential can be written as:

φ =
q

1− f
−R (εeq) +Dσ1fe

(

−σm
(1−f)σ1

)

(7)

Next, to implement the Rousselier model as a constitutive material in the formulation, UMAT subrou-

tine is chosen as an interface. The UMAT subroutine is the user-defined material of the ABAQUS/Standard

module, which implements the implicit integration scheme to update the state of the model and the

consistent tangent modulus (CTM) required for developing the mechanical constitutive model. For in-

tegration of the elastoplastic constitutive equation, the radial return algorithm [25, 26] is implemented

involving two main parts; the elastic predictor part, and the plastic corrector part. The detailed for-

mulation of the integration procedure is discussed further in the next section. Fig. 2 illustrates a full

schematic flow diagram of the UMAT subroutine algorithm that is implemented in this study.
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Next time 

increment
No

Plastic regimeϕ>0

ϕ≤0
Elastic regime

START

Calculate 𝜖𝑖𝑗𝑒 , 𝜎𝑖𝑗𝑡𝑟 , 𝑆𝑖𝑗𝑡𝑟, 𝑝𝑡𝑟and 𝑞𝑡𝑟

Input the value of material properties and 

arrange in ordered pairs of hardening data 

(E, v, 𝜎𝑦, 𝜎1, D, 𝑓0, 𝜎𝑇 and 𝜀𝑇)

Start time increment

Calculate the value of elastic properties

Set the initial value, ∆𝜖𝑝= 0
and ∆𝜖𝑞= 0

Store 𝜖𝑖𝑗𝑒 , 𝜎𝑖𝑗𝑡𝑟and 𝜀𝑒𝑞
Calculate the value of yield potential, ϕ

Update 𝜀𝑒𝑞 and 𝜎𝑦
Update the value of p and q

Determine the value of ∆𝑓 and update f

for current iteration

No [End of iteration]

Yes

Yes

No

Determine the flow direction, 𝑛𝑖𝑗
Update p, q, 𝜎𝑖𝑗, ∆𝜖𝑖𝑗𝑒 , ∆𝜖𝑖𝑗𝑝 , 𝜀𝑒𝑞 and f

Calculate coefficient in Appendix C and D

Determine the CTM for current time 

increment

Evaluate the five constants for computing 

CTM for pressure dependent plasticity 

model

i< maximum allowed number

Update the value of ∆𝜖𝑝 and ∆𝜖𝑞
Determine the correction value of 𝑐𝑝 and 𝑐𝑞

Update iteration number (i=i+1)

𝜕∆𝜖𝑝 or 𝜕∆𝜖𝑞 > 

tolerance

STOP

(Not converge)

Calculate coefficient in Appendix A

STOP

Yes

Figure 2: Schematic flow diagram of UMAT subroutine algorithm

3.2. Elastoplastic constitutive relations

The strain rate decomposition based on the deformation theory of plasticity [25] is formulated as:

dǫij = dǫeij + dǫpij (8)

where dǫij , dǫ
e
ij and dǫpij denote the differential change in the total, elastic and plastic strain tensors

respectively. Assuming small elastic strains, the Cauchy stress tensor, σij becomes:

σij =
∂W

∂ǫeij
(9)
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where W is the elastic strain energy potential. For the case of isotropic elasticity, Eq. (9) becomes:

σij = Ce
ijklǫ

e
kl (10)

Ce
ijkl = 2Gδikδjl +

(

K −
2

3
G

)

δijδkl (11)

where Ce
ijkl is a fourth order elasticity tensor, G and K are the elastic shear and bulk moduli. Next, the

stress tensor in Eq. (10) can be decomposed as:

σij = σmδij + Sij (12)

where δij is the Kronecker-Delta (second order identity tensor) and Sij is the deviatoric stress component.

The elastic limit of material under the combined state of stress can be substituted by a yield function

which is expressed as:

F
(

p, q,Hi
)

= 0 (13)

where p = −σm is the hydrostatic pressure, q =
√

3
2SijSij and Hi, i = 1, 2, ... is the internal state

variable such as hardening. To establish the yield criterion, the values of yield function, F are classified

as follow:

F < 0 : Elastic deformation regime (14)

F = 0 : Plastic deformation regime (15)

Hence, Eq. (12) becomes:

σij = −pδij +
2

3
qnij (16)

where nij =
∂q

∂σij
= 3

2
Sij

q
is the unit vector in the deviatoric space normal to the yield surface.

Moreover, to define the associated flow rule, the yield function, F and plastic potential, φ are taken

to be identical [27], and the increment in the plastic strain tensor can be written in term of the plastic

potential, φ as given by:

dǫpij = dλ
∂φ

∂σij
(17)

where dλ is a non-zero scalar factor of proportionality when plastic deformation occurs. The plastic

strain increment in Eq. (17) can also be decoupled into volumetric,
(

dǫpij
)

V
and deviatoric,

(

dǫpij
)

D

parts as:

dǫpij =
(

dǫpij
)

V
+
(

dǫpij
)

D

= dλ

(

∂φ

∂p

∂p

∂σij
+
∂φ

∂q

∂q

∂σij

)

= −
1

3
dλ
∂φ

∂p
δij + dλ

∂φ

∂q
nij

(18)
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where ∂p
∂σij

= −
1
3δij and nij =

∂q
∂σij

= 3
2
Sij

q
.

Substituting Eq. (18) with −dλ∂φ
∂p

= dǫp and dλ∂φ
∂q

= dǫq, which becomes:

dǫpij =
1

3
dǫpδij + dǫqnij (19)

where dǫp and dǫq are the variables corresponding to volumetric and deviatoric strain increments.

3.3. A radial return mapping algorithm

Next, the numerical integration of the constitutive relations of the model is performed using the

Aravas-Zhang formulation [28, 29, 30]. Accordingly, this algorithm is based on the elastic predictor-

plastic corrector, initially introduced in 1969 by Wilkins [31]. After several decades, Aravas [25] proposed

a framework of the radial return algorithm by including the first invariant for the hydrostatic stress into

the corrector part. Furthermore, he also provided the formulation for calculating the consistent tangent

moduli (CTM). Zhang [26, 32] continued the modification by developing an explicit expression for the

linearisation moduli which is close to the point return mapping algorithm. Resulting from this solution,

no matrix inversion is therefore required to formulate the CTM expression.

Accordingly, this method works when a step forward in time takes the updated stress, σtr
ij outside the

yield surface. This stress is also called trial stress or elastic predictor. The trial stress is then updated

with a plastic correction to return it onto the yield surface at t+∆t (Fig. 3) [33, 34].

Figure 3: Geometric illustration for hardening plasticity of radial return mapping method schemes

[33, 34]

The algorithm for calculating the total strain tensor starts with:

ǫij = ǫtij +∆ǫij (20)

where ∆ǫij is the increment of total strain tensor. By implementing the idealized stress-strain behaviour,

the relation obtained as:

σij = Ce
ijklǫ

e
kl = Ce

ijkl (ǫkl − ǫpkl)

= Ce
ijkl

[

ǫtkl +∆ǫkl − (ǫpkl)
t
−∆ǫpkl

]

= σtr
ij − Ce

ijkl (ǫ
p
kl)

(21)
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where ǫkl = ǫtkl +∆ǫkl, ǫ
p
kl = (ǫpkl)

t
+∆ǫpkl, σ

tr
ij = Ce

ijkl

[

(ǫkl)
t
+∆ǫkl

]

is the trial stress and (ǫpkl)
t
is the

plastic strain tensor at time step t. The term in Eq. (21) can be further elaborated as:

Ce
ijkl (∆ǫ

p
kl) =

[

2Gδikδjl +

(

K −
2

3
G

)

δijδkl

]

∆ǫpkl

= 2G∆ǫpij +K∆ǫpkkδij −
2

3
G∆ǫpkkδij

(22)

Subtituting Eq. (19) into Eq. (22):

Ce
ijkl (∆ǫ

p
kl) = 2G∆ǫqnij +K∆ǫpδij (23)

Hence, Eq. (23) is used to rewrite the Eq. (21) as:

σij = σtr
ij − 2G∆ǫqnij −K∆ǫpδij (24)

By substituting from Eq. (16), this becomes:

−pδij +
2

3
qnij = −ptrδij +

2

3
qtrntrij − 2G∆ǫqnij −K∆ǫpδij (25)

Thus, the correction formula for the hydrostatic pressure and equivalent stress at t+δt can be written

as:

p = ptr +K∆ǫp (26)

q = qtr − 3G∆ǫq (27)

3.4. Integrating the nonlinear equation

Following to the Newton Raphson method based on Taylor series expansion, ∆ǫp and ∆ǫq are used

to formulate the internal variables of the model as [25]:

0 = ∆ǫp

(

∂φ

∂q

)

+∆ǫq

(

∂φ

∂p

)

(28)

0 = ∆ǫpP +∆ǫqQ+ d∆ǫp

[

P +∆ǫp
∂P

∂∆ǫp
+∆ǫq

∂Q

∂∆ǫp

]

+ d∆ǫq

[

Q+∆ǫp
∂P

∂∆ǫq
+∆ǫq

∂Q

∂∆ǫq

]

+ dH1

[

∆ǫp
∂P

∂H1
+∆ǫq

∂Q

∂H1

]

+ dH2

[

∆ǫp
∂P

∂H2
+∆ǫq

∂Q

∂H2

]

(29)

where P = ∂φ
∂q

and Q = ∂φ
∂p

, while ∂∆ǫp and ∂∆ǫq are defined as the correction values for ∆ǫp and ∆ǫq

respectively. Moreover, the values of dH1 and dH2 can be determined as follows:

dH1 = −
1

Ω

{(

∂G2

∂H2

∂G1

∂∆ǫp
−
∂G1

∂H2

∂G2

∂∆ǫp

)

d∆ǫp +

(

∂G2

∂H2

∂G1

∂∆ǫq
−
∂G1

∂H2

∂G2

∂∆ǫq

)

d∆ǫq

}

−
1

Ω

{(

∂G2

∂H2

∂G1

∂p
−
∂G1

∂H2

∂G2

∂p

)

∂p

∂∆ǫp
d∆ǫp +

(

∂G2

∂H2

∂G1

∂q
−
∂G1

∂H2

∂G2

∂q

)

∂q

∂∆ǫq
d∆ǫq

} (30)
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dH2 = −
1

Ω

{(

−
∂G2

∂H1

∂G1

∂∆ǫp
+
∂G1

∂H1

∂G2

∂∆ǫp

)

d∆ǫp +

(

−
∂G2

∂H1

∂G1

∂∆ǫq
+
∂G1

∂H1

∂G2

∂∆ǫq

)

d∆ǫq

}

−
1

Ω

{(

−
∂G2

∂H1

∂G1

∂p
+
∂G1

∂H1

∂G2

∂p

)

∂p

∂∆ǫp
d∆ǫp +

(

−
∂G2

∂H1

∂G1

∂q
+
∂G1

∂H1

∂G2

∂q

)

∂q

∂∆ǫq
d∆ǫq

} (31)

where Ω =
(

∂G1

∂H1

)(

∂G2

∂H2

)

−

(

∂G2

∂H1

)(

∂G1

∂H2

)

. The G1 and G2 are the functions made by regrouping the

implicit function as:

G1 = ∆H1
− h1

(

∆ǫp,∆ǫq, p, q,H
1, H2

)

(32)

G2 = ∆H2
− h2

(

∆ǫp,∆ǫq, p, q,H
1, H2

)

(33)

By implementing Eq. (30) and Eq. (31) into Eq. (29) leads to the reduced form of the Newton-

Raphson equation as:

A11cp +A12cq = b1 (34)

A21cp +A22cq = b2 (35)

where d∆ǫp = cp and d∆ǫq = cq. The derivations for Aij and bi are given in Appendix A. The value of

∆ǫp and ∆ǫq are then updated by:

∆ǫn+1
p = ∆ǫnp + cp (36)

∆ǫn+1
q = ∆ǫnq + cq (37)

where superscript n is the iteration number.

3.5. Static implicit solution method

In this study, the implicit method has been formulated for finite element solution from static equi-

librium and the solution is determined iteratively which is performed until a convergence criterion is

satisfied for each increment. The virtual work principle is usually employed to explain the equilibrium

state, which considers a material continuum body in volume, V and bounding surface, S subjected to

surface traction, ti and distributed body force per unit volume, fi. The equilibrium equation can be

written as [35]:

∫

S

tidS +

∫

V

fidV = 0 (38)

The Cauchy stress matrix, σij at a point on S is defined by ti = σijnj , where nj is the unit vector

outward normal to S at the point. By considering the divergence theorem of Gauss, the above equation

reduces to:

∂σij
∂xj

+ fi = 0 (39)
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Multiplying Eq. (39) by a virtual displacement, δui and integrating it over the whole volume, then

applying the chain rule gives:

∫

V

σij
∂δui
∂xj

dV −

∫

S

tiδuidS −

∫

V

fiδuidV = 0 (40)

The term ∂δui

∂xj
is the unit relative virtual displacement, which can be decomposed into the virtual

strain tensor. The equilibrium statement in Eq. (40) can be written in terms of incremental virtual

displacement, G (ui) as:

G (ui) =

∫

V

σijδǫijdV −

∫

S

tiδuidS −

∫

V

fiδuidV (41)

where σij and ǫij are conjugate of material stress and strain measures.

If the Newton Raphson method is implemented to determine a set of solutions of Eq. (41), the

estimation of the root is written as:

∆un+1
i = un+1

i − uni = −

{

∂G (uni )

∂ui

}

−1

G (uni ) (42)

where superscript n is the number of iteration and
∂G(un

i )
∂ui

is the jacobian matrix of the governing

equations which is presented as:

∂G (uni )

∂ui
= KMN =

∫

v0

Bij,MDijklBij,NdV
0 + JMN (43)

where Bij,M and Bij,N are the strain variation matrices, which is based on the current position of the

material point. JMN is the global jacobian matrix and Dijkl is the consistent tangent moduli (CTM) of

the material, explained in Appendix B.

3.6. Extended Finite Element Method (XFEM)

The XFEM provides significant benefits in the numerical modelling of crack propagation where special

functions are added to the finite element approximation using the partition of unity framework [15, 36].

For crack modelling, a discontinuous function also called the Heaviside step function is where the linear

elastic asymptotic crack-tip displacement fields are used to account for the crack (Fig. 4). Therefore, this

enables the domain to be modelled by finite elements without explicitly meshing the crack surfaces. The

approximation for a displacement vector function, u with the partition of unity enrichment is [18, 37]:

u =
n
∑

i=1

Ni (x)ui +
n
∑

i=1

Ni (x)H (x) ai +
n
∑

i=1

Ni (x)
4

∑

α=1

Fα (x) bαi (44)

where Ni (x) is the nodal shape function, ui is the nodal displacement vector associated with the con-

tinuous part of the finite element solution, H(x) associates discontinuous jump function across the crack

surfaces, ai is the nodal enriched degree of freedom vector, Fα (x) represents the elastic asymptotic

crack-tip functions and bαi is the nodal enriched degree of freedom vector. Theoretically, the first term

is applicable to all nodes in the model and the second term is for nodes whose shape function support

cross by the crack interior. Meanwhile, the third term is only for nodes crossing at the crack tip.
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The Heaviside function, H(x) across the crack surfaces gives as:

H(x) =







1 if ξ ≥ 0

−1 otherwise
(45)

where ξ = n.(x − x∗), is the local axis perpendicular to the crack growth direction, x is a Gauss point,

x∗ is the point on the crack closest to x, and n is the unit outward normal to the crack at x. Moreover,

the asymptotic crack tip function, Fα (x) is given by:

Fα (x) = rm
[

sin
Θ

2
, cos

Θ

2
, sinΘsin

Θ

2
, sinΘcos

Θ

2

]

(46)

where (r,Θ) is a polar coordinate system with its origin at the crack tip and m is a value which depends

on the type of material. The processes flow of XFEM formulation is presented in Fig. 5. It should be

noted that for XFEM elements, the location and the number of Gauss points between load increments

may be changed as the crack propagates. Hence, material state variables must be updated consistently

until the end of the load increment.

However, in crack propagation problems, the crack crosses over a whole element one at a time only

permitting to work on plane problems with a reduced integration element, so that the stresses and strains

are calculated in the centre of the element (on the integration point). Also, as the crack tip is never

within an element, the singularity of the stresses does not need to be considered in the definition of the

elemental displacements [39]. Moreover, the asymptotic singularity functions are only considered when

modelling stationary cracks. Therefore, the crack must propagate across an entire element to avoid

the need to model the stress singularity. Thus, in the crack propagation of plane problem, the XFEM

discontinuous displacement approximation becomes:

u =
n
∑

i=1

Ni (x)ui +
n
∑

i=1

Ni (x)H (x) ai (47)

The crack initiation and direction of the crack extension need to be defined in the XFEM formulation,

in order to simulate the degradation and eventual failure of an enriched element. The failure mechanism

consists of two concepts: a crack initiation criterion and a damage evolution law. A crack process begins

when the stresses or the strains (based on the damage of traction-separation law) satisfy specified crack

initiation criteria. After that, the damage evolution law (based on displacement or energy release rate

criterion) describes the rate at which the cohesive stiffness is degraded once the corresponding initiation

criterion is reached.
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Figure 4: Enrichment nodes for the crack tip and the crack surfaces. The squared nodes (set of nodes

KΛ) are enriched by the crack tip functions while the circled nodes (set of nodes KΓ) are enriched by

the discontinuity functions

Start

XFEM updates

• Enriched nodes and element around crack tip (asymptotic function)

• Enriched nodes and elements around crack surface (heaviside function)

Crack growth criterion

XFEM 

formulation?

End

XFEM element integration and 

material point operation

Stress recovery

ABAQUS built-in 

element types

Penalty contact

Load increment

Contact?

Crack growth?

Yes

No

Yes

Yes

No

No

Data input and mesh initialization

Level set function

Figure 5: Flowchart of XFEM formulation [38]
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4. Computational tests

4.1. Lorentz notched rod specimen

The Lorentz notched rod problem [40] is selected in this study to examine the RuX model for the

void-crack assessment. The details and relevant data of A508 steel are shown in Fig. 6 and Table 1,

respectively. The simulation is performed under the assumption of 2D-axial symmetry which consisting

of a quadrilateral geometric element and 2484 number of nodes.

Figure 6: Geometry representation for notched

tensile, A508 steel specimen

Young modulus,E 198 GPa

Poisson ratio,ν 0.3

Yield strength,σy 550 MPa

Rousselier parameterσ1 490 MPa

Rousselier parameterD 2

Initial void volume fraction,fo 0.0005

Table 1: Mechanical properties and Rousselier parameters

The distribution of the stress, void volume fraction, equivalent plastic strain and the displacement

together with the crack propagation sequence are shown in Figs 7 to 10. As can be seen from the

results, starting from the initiation at the center of the crack, it then propagates towards the notch

until final failure. As shown in Fig. 8, the void is initiated, with growth following the direction of the

crack path. The void growth which represents the damage parameter in this study shows a microscopic

nature of fracture characterization. In addition, the critical value of void damage was captured, which

approximately 0.00074. In the present work, it is observed, without a crack propagation, the critical

void volume fraction is around 0.2. This is aligned with the significant value mentioned in literature,

which is about 0.2-0.3 [23]. However, for the first time, in this paper, XFEM is combined with the

Rousselier model, thus enabling the crack to propagate while keeping the observation of the void volume

fraction. Hence, the energy concentration exerted by the crack is released when the crack propagated

[41, 42] and resulted in a much lower void volume fraction compared to the case without crack extension.

Nevertheless, the results are still can be acceptable in a purpose to predict the void damage formation

with crack development.
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Figure 7: Stress in y-direction along the crack

Figure 8: Void volume fraction distribution along the crack

Figure 9: Equivalent plastic strain distribution along the crack
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Figure 10: Displacement in y-direction distribution

Next, these results were compared with the results found in the reference [40] regarding the stress

and the strain relation as shown in Fig. 11. In this figure, to trigger the connection between the damage

model with the crack or its propagation, the result from XFEM is compared with the RuX model. The

result shows that the XFEM formulation itself does not predict the behaviour in tension adequately.

However, the result for the RuX model shows an acceptable agreement with the benchmark result from

Lorentz et al. [40]. This shows that the RuX formulation connects XFEM and the damage model in

an appropriate manner. As the specimen is loaded, the stress first increases because of increasing void

fraction at the structural scale and then drops suddenly due to final cracks of the material. Numerical

values for the similarity between the predicted and benchmark results are shown in Table 2. Similarity

values of at least 95% show the effectiveness of the results in this analysis.

Table 2: Numerical values of similarity for different solution models

Solution model Total stress, (σt), MPa Similarity,%

Lorentz et al. (2008) 5957

Rousselier 6061 98

RuX 5667 95
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Figure 11: Stress-strain curve for notched tensile specimen

This is followed by evaluating the relation between force and displacement (Fig. 12), where the force

increases with increasing displacement until it reaches final failure and then drops due to final fracture.

Figure 12: Force-displacement distribution
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Figure 13: Evolution of damage variable in Lorentz et al. [40](above) and RuX model with

crack(below)

The evolution of the void volume fraction as a damage variable between both methods is then

compared to verify the predictive capability of the RuX model (Fig. 13). It should be noted that the

benchmark model does not consider or predicts the actual crack development. The evolution begins when

the localization phenomenon occurs due to high triaxiality in the centre of the specimen (Fig. 13(a)).

The void band forms a shear band due to the influence of shear localization, and the crack initiation

occurs at the crack tip based on the damage criteria of material (Fig. 13(b)). Then the evolution is

extended as the voids coalesce along the shear bands and the crack propagates correspondingly, thereby

resulting in the bifurcation (Fig. 13(c)). Finally, the strength of the structure is lost due to final crack

or called as the ultimate fracture mode (Fig. 13(d)). Therefore, good agreement is achieved between the

simulation and the benchmark results.

However, the crack propagation in the RuX model does not show signs of any formation of the

bifurcation or cup-cone fracture at the plots like the results obtained from [40, 11]. There are some

arguments to be highlighted at this point, which is first the crack growth direction will diverge or incline

because of factors such as mesh orientation, mixed-mode loading conditions or having different material

properties due to the presence of interfaces at arbitrary orientations. In this case, a standard tension test

is simulated, and the material is considered homogeneous, thus it is impossible to form a cup-cone fracture

behaviour in the computational results. Secondly, the crack path is influenced by the arrangement of the

integration points in the elements. For this case, the crack jumps from one point to another based on

the XFEM formulation, in which the enrichment functions typically consist of the near-tip asymptotic

functions that capture the singularity around the crack tip and a discontinuous function that represents

the jump in displacement across the crack surfaces. Note that at the crack tip, where steep gradients of
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stresses and strains take place, the critical conditions for instability are achieved over some characteristic

length, related to interparticle spacing. Otherwise, void coalescence and material decohesion will not

occur [7].

4.1.1. Relative error and mesh convergence analysis

To validate the stability and accuracy of the simulation results, analysis of the relative error and

mesh convergence was conducted. The relative error is calculated from the residuals which represent

the difference between the internal and external forces acting on a model. In this case, the residual

displays information that determines whether an iteration has produced an equilibrium solution [33].

If the residuals are small, the system accepts the iteration as converged. It can be seen in Fig. 14,

from the readings that the maximum residual norm produced is consistent after 3000 iterations, showing

that the solution achieved a stable condition and the data recorded are below the tolerance value. For

this case, the tolerance is set to 0.005 and is used to determine whether a solution is converged. The

tolerances must be small to provide an accurate solution but large enough to achieve the solution within

a reasonable number of iterations [38]. Also, to identify the adequate size of meshing in the analysis, a

mesh convergence curve is presented as shown in Fig. 15, showing the convergence and reaching a stable

form [43].

Figure 14: Maximum residual norm vs. No. of iteration
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Figure 15: Mesh convergence curve

4.2. Compact tension (CT) specimen

The RuX model is further investigated using the compact tension (CT) specimen studied by Samal

et al. [44]. A 2D-plane stress analysis test is performed consisting of the quadrilateral geometric element

and 8398 nodes used for the specimen. The geometry and the mechanical properties of the specimen

are shown in Fig. 16 and Table 3 respectively. The material of the CT specimen is low alloy steel,

22NiMoCr37 and the initial crack is 16.1 mm.

Figure 16: Geometry representation for CT-specimen

Young modulus,E 210 GPa

Poisson ratio,ν 0.3

Yield strength,σy 563 MPa

Rousselier parameterσ1 445 MPa

Rousselier parameterD 2

Initial void volume fraction,fo 0.0003

Table 3: Mechanical properties and

Rousselier parameters

The contour plots for the stress and void volume fraction are shown in Figs 17 and 18. It can be

observed from Fig. 18 that the highest void damage contour is concentrated at zones of high stress (as

shown in Fig. 17), which is at the crack tip area. Furthermore, the contour plot of plastic potential is

also presented (as shown in Fig. 19). As a final discussion point, the force, F as a function of the imposed

crack mouth opening displacement, CMOD is depicted and the comparison with the experimental result

is shown in Fig. 20. It can be seen that the RuX model result follows a similar trend to the experiment,

with reasonable agreement. However, variances occur, especially after it enters the plastic region of

material behaviour. The inability to achieve a perfect match with the experiment in this region is caused

by the interaction of XFEM module in Abaqus which by default applies a linear constitutive relationship.
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In contrast, the applied Rousselier model tries to follow the material’s plastic behaviour. As it can be seen

in the previous result in Fig. 11, applying XFEM only, resulted in a linear constitutive relationship, but

applying the Rousselier model together fixing the result, thus, it follows the material’s plastic behaviour.

Nevertheless, a fair performance is shown via the new algorithm, in which the crack propagation can be

evaluated via XFEM while it tries to maintain the plastic behaviour via the Rousselier model.
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Figure 17: Stress in y-direction along the crack

Figure 18: Void volume fraction distribution along the crack

Figure 19: Plastic potential distribution along the crack

Figure 20: Force-CMOD for CT-specimen in simulation and experiment
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5. Conclusion

Phenomenologically, the initiation and propagation of a crack by XFEM are investigated with the

evolution of the void damage described by the Rousselier model in ductile materials. From this study,

ductile fracture analysis was successfully achieved by combining the XFEM with the Rousselier damage

model and the RuX model was introduced as a solution. This is the first contribution that practically

describes the relationship between the void volume fraction as a damage parameter with the crack growth,

which can enhance the numerical solution for the prediction of ductile fracture behaviour. There have

some points that need to be highlighted here which are:

• The RuX model was tested by investigating the relation of void-crack in Lorentz-notched rod

and CT-specimen. The stress-strain curve and force-displacement relation have been presented to

prove that good agreement results are achieved. However, some variances need to be taken into

account here due to the cause of interaction of XFEM module and the Rousselier damage model.

The relative error and mesh convergence curve were presented and the overall implementation was

verified.

• The evolution of the void damage using the RuX model was discussed in this study. However,

the RuX model was unable to predict the bifurcation or cup-cone fracture in damage material

behaviour. There are some arguments in this situation, and many factors need to be taken into

account such as material properties, mesh orientation or mixed-mode loading conditions.

• The critical value of void damage formation in RuX model was relatively lower than the value

obtained in previous literature. This is due to the energy concentration exerted by the crack is

released when the crack propagated and resulted in a much lower void volume fraction compared to

the case without crack extension. Nevertheless, the results are still acceptable in order to predict

the void damage formation with crack development.

In the future study, a 3D-simulation problem will be considered and tested, to validate the capability

of the developed model. In particular, attention should be paid to the convergence problems to upgrade

the performance of the computational results.
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7. Appendix A: Coefficients in Equations 34 and 35

A11 = P +∆ǫp

(

K ∂P
∂p

+ ∂P
∂H1

∂H1

∂∆ǫp
+ ∂P

∂H2
∂H2

∂∆ǫp

)

+∆ǫq

(

K ∂Q
∂p

+ ∂Q
∂H1

∂H1

∂∆ǫp
+ ∂Q

∂H2
∂H2

∂∆ǫp

)

A12 = Q+∆ǫp

(

−3G∂P
∂q

+ ∂P
∂H1

∂H1

∂∆ǫq
+ ∂P

∂H2
∂H2

∂∆ǫq

)

+∆ǫq

(

−3G∂Q
∂q

+ ∂Q
∂H1

∂H1

∂∆ǫq
+ ∂Q

∂H2
∂H2

∂∆ǫq

)

A21 = K ∂φ
∂p

+ ∂φ
∂H1

∂H1

∂∆ǫp
+ ∂φ

∂H2
∂H2

∂∆ǫp
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A22 = −3G∂φ
∂q

+ ∂φ
∂H1

∂H1

∂∆ǫq
+ ∂φ

∂H2
∂H2

∂∆ǫq

b1 = −∆ǫpP −∆ǫqQ

b2 = −φ

8. Appendix B: Derivation of consistence tangent modulus (CTM) formulation

To achieve convergence in the analysis, the tangent modulus formulation need to be consistent with

the stress update procedure. For this study, Zhang approach [26, 45] is used which can develop an

explicit CTM formula solution with the return mapping algorithm. The CTM formula is defined as:

Dijkl =
∂σij
∂ǫkl

=
∂∆σij
∂∆ǫkl

(48)

By referring to kinematic solution, three direct strains are defined as:

∂ (ǫij)
tr

D
= ∂ (∆ǫij)D =

(

Jijkl −
1

3
δijδkl

)

∂ǫkl (49)

∂p = −Kδpq∂ǫpq +K∂∆ǫp (50)

∂σm = Kδpq∂ǫpq −K∂∆ǫp (51)

Differentiation from Eq. (12) and using Eq. (51) gives:

∂σij = Kδijδpq∂ǫpq −Kδij∂∆ǫp

+

{

2G
q

qtr
Jijkl +

4G2

qtr
∆ǫqnijS

tr
ij

}

∂ (ǫij)
tr

D
− 2Gnij∂∆ǫq

(52)

By substituting Eq. (49) into Eq. (52) as:

∂σij = Zijkl∂ǫkl −Kδij∂∆ǫp − 2Gnij∂∆ǫq (53)

where,

Zijkl =

(

K −
2

3
G
q

qtr

)

δijδkl + 2G
q

qtr
Jijkl +

4G2

qtr
∆ǫqnijnkl (54)

By considering the linearization of the flow and yield condition at the end of the time step, the

equations obtained as [26, 28]:

Ā11∂∆ǫp + Ā12∂∆ǫq = (B11δij +B12nij) ∂σij (55)

Ā21∂∆ǫp + Ā22∂∆ǫq = (B21δij +B22nij) ∂σij (56)

where the constants Āij and Bij are given in Appendix C.

By substituting of Eq. (53) into Eq. (55) and Eq. (56) gives:
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∂∆ǫp = (C11δij + C12nij)Zijkl∂ǫkl (57)

∂∆ǫq = (C21δij + C22nij)Zijkl∂ǫkl (58)

where the constants, Cij are presented in Appendix D.

By substituting of Eq. (57) and Eq. (58) into Eq. (53), yields an expression of the tangent moduli

consistent with the radial return method for the general pressure-dependent elastoplastic model:

∂σij =MijklZijkl∂ǫkl → Dijkl =
∂σij
∂ǫkl

=MijklZijkl (59)

where,

Mijkl = Jijkl −M i
ijkl −Mn

ijkl (60)

M i
ijkl = K (C11δijδkl + C12δijnkl) (61)

Mn
ijkl = 2G (C21nijδkl + C22nijnkl) (62)

Finally, by multiplying Mijkl and Zijkl and using the relation between δij and nij , the following

explicit expression for the CTM is obtained:

Dijkl = d0Jijkl + d1δijδkl + d2nijnkl + d3δijnkl + d4nijδkl (63)

where the five constants are given as:

d0 = 2G
q

qtr
(64)

d1 = K −
2G

3

q

qtr
− 3K2C11 (65)

d2 =
4G2

qtr
∆ǫq − 4G2C22 (66)

d3 = −2GKC12 (67)

d4 = −6GKC21 (68)

it should be noted that Dijkl is symmetric if C12 = 3C21.
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9. Appendix C: Coefficient in Equations 55 and 56

Ā11 = P +∆ǫp

(

∂P
∂H1

∂H1

∂∆ǫp
+ ∂P

∂H2
∂H2

∂∆ǫp

)

+∆ǫq

(

∂Q
∂H1

∂H1

∂∆ǫp
+ ∂Q

∂H2
∂H2

∂∆ǫp

)

Ā21 = ∂φ
∂H1

∂H1

∂∆ǫp
+ ∂φ

∂H2
∂H2

∂∆ǫp

Ā22 = ∂φ
∂H1

∂H1

∂∆ǫq
+ ∂φ

∂H2
∂H2

∂∆ǫq

B11 =
∆ǫp
3

(

∂P
∂p

+ ∂P
∂H1

∂H1

∂p
+ ∂P

∂H2
∂H2

∂p

)

+
∆ǫq
3

(

∂Q
∂p

+ ∂Q
∂H1

∂H1

∂p
+ ∂Q

∂H2
∂H2

∂p

)

B12 = −∆ǫp

(

∂P
∂q

+ ∂P
∂H1

∂H1

∂q
+ ∂P

∂H2
∂H2

∂q

)

−∆ǫq

(

∂Q
∂q

+ ∂Q
∂H1

∂H1

∂q
+ ∂Q

∂H2
∂H2

∂q

)

B21 = 1
3

(

Q+ ∂φ
∂H1

∂H1

∂p
+ ∂φ

∂H2
∂H2

∂p

)

B22 = −

(

P + ∂φ
∂H1

∂H1

∂q
+ ∂φ

∂H2
∂H2

∂q

)

10. Appendix D: Coefficients in Equations 61 and 62

C11 =
[(

Ā22 + 3GB22

)

B11 −
(

Ā12 + 3GB12

)

B12

]

/∆

C12 =
[(

Ā22 + 3GB22

)

B12 −
(

Ā12 + 3GB12

)

B22

]

/∆

C21 =
[(

Ā11 + 3KB11

)

B21 −
(

Ā21 + 3KB21

)

B11

]

/∆

C22 =
[(

Ā11 + 3KB11

)

B22 −
(

Ā21 + 3KB21

)

B12

]

/∆

where,

∆ =
(

Ā11 + 3KB11

) (

Ā22 + 3GB22

)

−
(

Ā12 + 3GB11

) (

Ā21 + 3KB21

)
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