301 research outputs found

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    Get PDF
    Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p<0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p<0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised

    Taking the pulse of Earth's tropical forests using networks of highly distributed plots

    Get PDF
    Tropical forests are the most diverse and productive ecosystems on Earth. While better understanding of these forests is critical for our collective future, until quite recently efforts to measure and monitor them have been largely disconnected. Networking is essential to discover the answers to questions that transcend borders and the horizons of funding agencies. Here we show how a global community is responding to the challenges of tropical ecosystem research with diverse teams measuring forests tree-by-tree in thousands of long-term plots. We review the major scientific discoveries of this work and show how this process is changing tropical forest science. Our core approach involves linking long-term grassroots initiatives with standardized protocols and data management to generate robust scaled-up results. By connecting tropical researchers and elevating their status, our Social Research Network model recognises the key role of the data originator in scientific discovery. Conceived in 1999 with RAINFOR (South America), our permanent plot networks have been adapted to Africa (AfriTRON) and Southeast Asia (T-FORCES) and widely emulated worldwide. Now these multiple initiatives are integrated via ForestPlots.net cyber-infrastructure, linking colleagues from 54 countries across 24 plot networks. Collectively these are transforming understanding of tropical forests and their biospheric role. Together we have discovered how, where and why forest carbon and biodiversity are responding to climate change, and how they feedback on it. This long-term pan-tropical collaboration has revealed a large long-term carbon sink and its trends, as well as making clear which drivers are most important, which forest processes are affected, where they are changing, what the lags are, and the likely future responses of tropical forests as the climate continues to change. By leveraging a remarkably old technology, plot networks are sparking a very modern revolution in tropical forest science. In the future, humanity can benefit greatly by nurturing the grassroots communities now collectively capable of generating unique, long-term understanding of Earth's most precious forests.Additional co-authors: Susan Laurance, William Laurance, Francoise Yoko Ishida, Andrew Marshall, Catherine Waite, Hannsjoerg Woell, Jean-Francois Bastin, Marijn Bauters, Hans Beeckman, Pfascal Boeckx, Jan Bogaert, Charles De Canniere, Thales de Haulleville, Jean-Louis Doucet, Olivier Hardy, Wannes Hubau, Elizabeth Kearsley, Hans Verbeeck, Jason Vleminckx, Steven W. Brewer, Alfredo Alarcón, Alejandro Araujo-Murakami, Eric Arets, Luzmila Arroyo, Ezequiel Chavez, Todd Fredericksen, René Guillén Villaroel, Gloria Gutierrez Sibauty, Timothy Killeen, Juan Carlos Licona, John Lleigue, Casimiro Mendoza, Samaria Murakami, Alexander Parada Gutierrez, Guido Pardo, Marielos Peña-Claros, Lourens Poorter, Marisol Toledo, Jeanneth Villalobos Cayo, Laura Jessica Viscarra, Vincent Vos, Jorge Ahumada, Everton Almeida, Jarcilene Almeida, Edmar Almeida de Oliveira, Wesley Alves da Cruz, Atila Alves de Oliveira, Fabrício Alvim Carvalho, Flávio Amorim Obermuller, Ana Andrade, Fernanda Antunes Carvalho, Simone Aparecida Vieira, Ana Carla Aquino, Luiz Aragão, Ana Claudia Araújo, Marco Antonio Assis, Jose Ataliba Mantelli Aboin Gomes, Fabrício Baccaro, Plínio Barbosa de Camargo, Paulo Barni, Jorcely Barroso, Luis Carlos Bernacci, Kauane Bordin, Marcelo Brilhante de Medeiros, Igor Broggio, José Luís Camargo, Domingos Cardoso, Maria Antonia Carniello, Andre Luis Casarin Rochelle, Carolina Castilho, Antonio Alberto Jorge Farias Castro, Wendeson Castro, Sabina Cerruto Ribeiro, Flávia Costa, Rodrigo Costa de Oliveira, Italo Coutinho, John Cunha, Lola da Costa, Lucia da Costa Ferreira, Richarlly da Costa Silva, Marta da Graça Zacarias Simbine, Vitor de Andrade Kamimura, Haroldo Cavalcante de Lima, Lia de Oliveira Melo, Luciano de Queiroz, José Romualdo de Sousa Lima, Mário do Espírito Santo, Tomas Domingues, Nayane Cristina dos Santos Prestes, Steffan Eduardo Silva Carneiro, Fernando Elias, Gabriel Eliseu, Thaise Emilio, Camila Laís Farrapo, Letícia Fernandes, Gustavo Ferreira, Joice Ferreira, Leandro Ferreira, Socorro Ferreira, Marcelo Fragomeni Simon, Maria Aparecida Freitas, Queila S. García, Angelo Gilberto Manzatto, Paulo Graça, Frederico Guilherme, Eduardo Hase, Niro Higuchi, Mariana Iguatemy, Reinaldo Imbrozio Barbosa, Margarita Jaramillo, Carlos Joly, Joice Klipel, Iêda Leão do Amaral, Carolina Levis, Antonio S. Lima, Maurício Lima Dan, Aline Lopes, Herison Madeiros, William E. Magnusson, Rubens Manoel dos Santos, Beatriz Marimon, Ben Hur Marimon Junior, Roberta Marotti Martelletti Grillo, Luiz Martinelli, Simone Matias Reis, Salomão Medeiros, Milton Meira-Junior, Thiago Metzker, Paulo Morandi, Natanael Moreira do Nascimento, Magna Moura, Sandra Cristina Müller, Laszlo Nagy, Henrique Nascimento, Marcelo Nascimento, Adriano Nogueira Lima, Raimunda Oliveira de Araújo, Jhonathan Oliveira Silva, Marcelo Pansonato, Gabriel Pavan Sabino, Karla Maria Pedra de Abreu, Pablo José Francisco Pena Rodrigues, Maria Piedade, Domingos Rodrigues, José Roberto Rodrigues Pinto, Carlos Quesada, Eliana Ramos, Rafael Ramos, Priscyla Rodrigues, Thaiane Rodrigues de Sousa, Rafael Salomão, Flávia Santana, Marcos Scaranello, Rodrigo Scarton Bergamin, Juliana Schietti, Jochen Schöngart, Gustavo Schwartz, Natalino Silva, Marcos Silveira, Cristiana Simão Seixas, Marta Simbine, Ana Claudia Souza, Priscila Souza, Rodolfo Souza, Tereza Sposito, Edson Stefani Junior, Julio Daniel do Vale, Ima Célia Guimarães Vieira, Dora Villela, Marcos Vital, Haron Xaud, Katia Zanini, Charles Eugene Zartman, Nur Khalish Hafizhah Ideris, Faizah binti Hj Metali, Kamariah Abu Salim, Muhd Shahruney Saparudin, Rafizah Mat Serudin, Rahayu Sukmaria Sukri, Serge Begne, George Chuyong, Marie Noel Djuikouo, Christelle Gonmadje, Murielle Simo-Droissart, Bonaventure Sonké, Hermann Taedoumg, Lise Zemagho, Sean Thomas, Fidèle Baya, Gustavo Saiz, Javier Silva Espejo, Dexiang Chen, Alan Hamilton, Yide Li, Tushou Luo, Shukui Niu, Han Xu, Zhang Zhou, Esteban Álvarez-Dávila, Juan Carlos Andrés Escobar, Henry Arellano-Peña, Jaime Cabezas Duarte, Jhon Calderón, Lina Maria Corrales Bravo, Borish Cuadrado, Hermes Cuadros, Alvaro Duque, Luisa Fernanda Duque, Sandra Milena Espinosa, Rebeca Franke-Ante, Hernando García, Alejandro Gómez, Roy González-M., Álvaro Idárraga-Piedrahíta, Eliana Jimenez, Rubén Jurado, Wilmar López Oviedo, René López-Camacho, Omar Aurelio Melo Cruz, Irina Mendoza Polo, Edwin Paky, Karen Pérez, Angel Pijachi, Camila Pizano, Adriana Prieto, Laura Ramos, Zorayda Restrepo Correa, James Richardson, Elkin Rodríguez, Gina M. Rodriguez M., Agustín Rudas, Pablo Stevenson, Markéta Chudomelová, Martin Dancak, Radim Hédl, Stanislav Lhota, Martin Svatek, Jacques Mukinzi, Corneille Ewango, Terese Hart, Emmanuel Kasongo Yakusu, Janvier Lisingo, Jean-Remy Makana, Faustin Mbayu, Benjamin Toirambe, John Tshibamba Mukendi, Lars Kvist, Gustav Nebel, Selene Báez, Carlos Céron, Daniel M. Griffith, Juan Ernesto Guevara Andino, David Neill, Walter Palacios, Maria Cristina Peñuela-Mora, Gonzalo Rivas-Torres, Gorky Villa, Sheleme Demissie, Tadesse Gole, Techane Gonfa, Kalle Ruokolainen, Michel Baisie, Fabrice Bénédet, Wemo Betian, Vincent Bezard, Damien Bonal, Jerôme Chave, Vincent Droissart, Sylvie Gourlet-Fleury, Annette Hladik, Nicolas Labrière, Pétrus Naisso, Maxime Réjou-Méchain, Plinio Sist, Lilian Blanc, Benoit Burban, Géraldine Derroire, Aurélie Dourdain, Clement Stahl, Natacha Nssi Bengone, Eric Chezeaux, Fidèle Evouna Ondo, Vincent Medjibe, Vianet Mihindou, Lee White, Heike Culmsee, Cristabel Durán Rangel, Viviana Horna, Florian Wittmann, Stephen Adu-Bredu, Kofi Affum-Baffoe, Ernest Foli, Michael Balinga, Anand Roopsind, James Singh, Raquel Thomas, Roderick Zagt, Indu K. Murthy, Kuswata Kartawinata, Edi Mirmanto, Hari Priyadi, Ismayadi Samsoedin, Terry Sunderland, Ishak Yassir, Francesco Rovero, Barbara Vinceti, Bruno Hérault, Shin-Ichiro Aiba, Kanehiro Kitayama, Armandu Daniels, Darlington Tuagben, John T. Woods, Muhammad Fitriadi, Alexander Karolus, Kho Lip Khoon, Noreen Majalap, Colin Maycock, Reuben Nilus, Sylvester Tan, Almeida Sitoe, Indiana Coronado G., Lucas Ojo, Rafael de Assis, Axel Dalberg Poulsen, Douglas Sheil, Karen Arévalo Pezo, Hans Buttgenbach Verde, Victor Chama Moscoso, Jimmy Cesar Cordova Oroche, Fernando Cornejo Valverde, Massiel Corrales Medina, Nallaret Davila Cardozo, Jano de Rutte Corzo, Jhon del Aguila Pasquel, Gerardo Flores Llampazo, Luis Freitas, Darcy Galiano Cabrera, Roosevelt García Villacorta, Karina Garcia Cabrera, Diego García Soria, Leticia Gatica Saboya, Julio Miguel Grandez Rios, Gabriel Hidalgo Pizango, Eurídice Honorio Coronado, Isau Huamantupa-Chuquimaco, Walter Huaraca Huasco, Yuri Tomas Huillca Aedo, Jose Luis Marcelo Peña, Abel Monteagudo Mendoza, Vanesa Moreano Rodriguez, Percy Núñez Vargas, Sonia Cesarina Palacios Ramos, Nadir Pallqui Camacho, Antonio Peña Cruz, Freddy Ramirez Arevalo, José Reyna Huaymacari, Carlos Reynel Rodriguez, Marcos Antonio Ríos Paredes, Lily Rodriguez Bayona, Rocio del Pilar Rojas Gonzales, Maria Elena Rojas Peña, Norma Salinas Revilla, Yahn Carlos Soto Shareva, Raul Tupayachi Trujillo, Luis Valenzuela Gamarra, Rodolfo Vasquez Martinez, Jim Vega Arenas, Christian Amani, Suspense Averti Ifo, Yannick Bocko, Patrick Boundja, Romeo Ekoungoulou, Mireille Hockemba, Donatien Nzala, Alusine Fofanah, David Taylor, Guillermo Bañares-de Dios, Luis Cayuela, Íñigo Granzow-de la Cerda, Manuel Macía, Juliana Stropp, Maureen Playfair, Verginia Wortel, Toby Gardner, Robert Muscarella, Hari Priyadi, Ervan Rutishauser, Kuo-Jung Chao, Pantaleo Munishi, Olaf Bánki, Frans Bongers, Rene Boot, Gabriella Fredriksson, Jan Reitsma, Hans ter Steege, Tinde van Andel, Peter van de Meer, Peter van der Hout, Mark van Nieuwstadt, Bert van Ulft, Elmar Veenendaal, Ronald Vernimmen, Pieter Zuidema, Joeri Zwerts, Perpetra Akite, Robert Bitariho, Colin Chapman, Eilu Gerald, Miguel Leal, Patrick Mucunguzi, Miguel Alexiades, Timothy R. Baker, Karina Banda, Lindsay Banin, Jos Barlow, Amy Bennett, Erika Berenguer, Nicholas Berry, Neil M. Bird, George A. Blackburn, Francis Brearley, Roel Brienen, David Burslem, Lidiany Carvalho, Percival Cho, Fernanda Coelho, Murray Collins, David Coomes, Aida Cuni-Sanchez, Greta Dargie, Kyle Dexter, Mat Disney, Freddie Draper, Muying Duan, Adriane Esquivel-Muelbert, Robert Ewers, Belen Fadrique, Sophie Fauset, Ted R. Feldpausch, Filipe França, David Galbraith, Martin Gilpin, Emanuel Gloor, John Grace, Keith Hamer, David Harris, Tommaso Jucker, Michelle Kalamandeen, Bente Klitgaard, Aurora Levesley, Simon L. Lewis, Jeremy Lindsell, Gabriela Lopez-Gonzalez, Jon Lovett, Yadvinder Malhi, Toby Marthews, Emma McIntosh, Karina Melgaço, William Milliken, Edward Mitchard, Peter Moonlight, Sam Moore, Alexandra Morel, Julie Peacock, Kelvin Peh, Colin Pendry, R. Toby Pennington, Luciana de Oliveira Pereira, Carlos Peres, Oliver L. Phillips, Georgia Pickavance, Thomas Pugh, Lan Qie, Terhi Riutta, Katherine Roucoux, Casey Ryan, Tiina Sarkinen, Camila Silva Valeria, Dominick Spracklen, Suzanne Stas, Martin Sullivan, Michael Swaine, Joey Talbot, James Taplin, Geertje van der Heijden, Laura Vedovato, Simon Willcock, Mathew Williams, Luciana Alves, Patricia Alvarez Loayza, Gabriel Arellano, Cheryl Asa, Peter Ashton, Gregory Asner, Terry Brncic, Foster Brown, Robyn Burnham, Connie Clark, James Comiskey, Gabriel Damasco, Stuart Davies, Tony Di Fiore, Terry Erwin, William Farfan-Rios, Jefferson Hall, David Kenfack, Thomas Lovejoy, Roberta Martin, Olga Martha Montiel, John Pipoly, Nigel Pitman, John Poulsen, Richard Primack, Miles Silman, Marc Steininger, Varun Swamy, John Terborgh, Duncan Thomas, Peter Umunay, Maria Uriarte, Emilio Vilanova Torre, Ophelia Wang, Kenneth Young, Gerardo A. Aymard C., Lionel Hernández, Rafael Herrera Fernández, Hirma Ramírez-Angulo, Pedro Salcedo, Elio Sanoja, Julio Serrano, Armando Torres-Lezama, Tinh Cong Le, Trai Trong Le, Hieu Dang Tra

    Methodology for the development of Kohonen\'s self-organizing maps implemented in FPGA.

    No full text
    Dentro do cenário de projeto de circuitos elétricos orientados para o processamento de redes neurais artificiais, este trabalho se concentra no estudo da implementação de Mapas Auto-organizáveis (SOM, do inglês, Self-Organizing Maps) em chips FPGA. A pesquisa aqui realizada busca, fundamentalmente, responder à seguinte pergunta: como devem ser projetadas as arquiteturas computacionais de cada etapa de processamento do SOM para serem adequadamente executadas em FPGA? De forma mais detalhada, o trabalho investiga as possibilidades que diferentes circuitos de computação do SOM oferecem em relação à velocidade de processamento, ao consumo de recursos do FPGA e à consistência com o formalismo teórico que fundamenta esse modelo de rede neural. Tal objetivo de pesquisa é motivado por possibilitar o desenvolvimento de sistemas de processamento neural que exibam as características positivas típicas de implementações diretas em hardware, como o processamento embarcado e a aceleração computacional. CONTRIBUIÇÕES PRINCIPAIS No decorrer da investigação de tais questões, o presente trabalho gerou contribuições com diferentes graus de impacto. A contribuição mais essencial do ponto de vista de estruturação do restante da pesquisa é a fundamentação teórica das propriedades de computação do SOM em hardware. Tal fundamentação é importante pois permitiu a construção dos alicerces necessários para o estudo das diferentes arquiteturas de circuitos exploradas neste trabalho, de forma que estas permanecessem consistentes com as premissas teóricas que certificam o modelo de computação neural estudado. Outra contribuição avaliada como de grande impacto, e que se consolida como um objeto gerado pela pesquisa, é a proposta de um circuito processador para SOM em FPGA que possui o estado-da-arte em velocidade de computação, medido em CUPS (Connections Updated Per Second). Tal processador permite atingir 52,67 GCUPS, durante a fase de treinamento do SOM, um ganho de aproximadamente 100% em relação aos trabalhos publicados na literatura. A aceleração possibilitada pela exploração de processamentos paralelos em FPGA, desenvolvida neste trabalho, é de três a quatro ordens de grandeza em relação a execuções em software do SOM com a mesma configuração. A última contribuição considerada como de grande impacto é a caracterização da execução do SOM em FPGA. Tal avaliação se faz necessária porque os processos de computação dos modelos neurais em hardware, embora semelhantes, não são necessariamente idênticos aos mesmos processos executados em software. Desta forma, a contribuição deste ponto de pesquisa pode ser entendida como a análise do impacto das mudanças implementadas na computação do SOM em FPGA em relação à execução tradicional do algoritmo, feita pela avaliação dos resultados produzidos pela rede neural por medidas de erros topográficos e de quantização. Este trabalho também gerou contribuições consideradas como de médio impacto, que podem ser divididas em dois grupos: aplicações práticas e aportes teóricos. A primeira contribuição de origem prática é a investigação de trabalhos publicados na literatura envolvendo SOM cujas aplicações podem ser viabilizadas por implementações em hardware. Os trabalhos localizados nesse levantamento foram organizados em diferentes categorias, conforme a área de pesquisa - como, por exemplo, Indústria, Robótica e Medicina - e, em geral, eles utilizam o SOM em aplicações que possuem requisitos de velocidade computacional ou embarque do processamento, portanto, a continuidade de seus desenvolvimentos é beneficiada pela execução direta em hardware. As outras duas contribuições de médio impacto de origem prática são as aplicações que serviram como plataforma de teste dos circuitos desenvolvidos para a implementação do SOM. A primeira aplicação pertence à área de telecomunicações e objetiva a identificação de símbolos transmitidos por 16-QAM ou 64-QAM. Estas duas técnicas de modulação são empregadas em diversas aplicações com requisitos de mobilidade - como telefonia celular, TV digital em dispositivos portáteis e Wi-Fi - e o SOM é utilizado para identificar sinais QAM recepcionados com ruídos e distorções. Esta aplicação gerou a publicação de um artigo na revista da Springer, Neural Computing and Applications: Sousa; Pires e Del-Moral-Hernandez (2017). A segunda aplicação pertence à área de processamento de imagem e visa reconhecer ações humanas capturadas por câmeras de vídeo. O processamento autônomo de imagens executado por chips FPGA junto às câmeras de vídeo pode ser empregado em diferentes utilizações, como, por exemplo, sistemas de vigilância automática ou assistência remota em locais públicos. Esta segunda aplicação também é caracterizada por demandar arquiteturas computacionais de alto desempenho. Todas as contribuições teóricas deste trabalho avaliadas como de médio impacto estão relacionadas ao estudo das características de arquiteturas de hardware para computação do modelo SOM. A primeira destas é a proposta de uma função de vizinhança do SOM baseada em FPGA. O objetivo de tal proposta é desenvolver uma expressão computacional para ser executada no chip que constitua uma alternativa eficiente tanto à função gaussiana, tradicionalmente empregada no processo de treinamento do SOM, quanto à função retangular, utilizada de forma rudimentar nas primeiras pesquisas publicadas sobre a implementação do SOM em FPGA. A segunda destas contribuições é a descrição detalhada dos componentes básicos e dos blocos computacionais utilizados nas diferentes etapas de execução do SOM em FPGA. A apresentação dos detalhes da arquitetura de processamento, incluindo seus circuitos internos e a função computada por cada um de seus blocos, permite que trabalhos futuros utilizem os desenvolvimentos realizados nesta pesquisa. Esta descrição detalhada e funcional foi aceita para publicação no IEEE World Congress on Computational Intelligence (WCCI 2018): Sousa et al. (2018). A terceira contribuição teórica de médio impacto é a elaboração de um modelo distribuído de execução do SOM em FPGA sem o uso de uma unidade central de controle. Tal modelo permite a execução das fases de aprendizado e operação da rede neural em hardware de forma distribuída, a qual alcança um comportamento global de auto-organização dos neurônios apenas pela troca local de dados entre elementos de processamento vizinhos. A descrição do modelo distribuído, em conjunto com sua caracterização, está publicada em um artigo no International Joint Conference on Neural Networks do IEEE (IJCNN 2017): Sousa e Del-Moral-Hernandez (2017a). A última contribuição deste grupo de aporte teórico é a comparação entre diferentes modelos de execução do SOM em FPGA. A comparação tem a função de avaliar e contrastar três diferentes possibilidades de implementação do SOM: o modelo distribuído, o modelo centralizado e o modelo híbrido. Os testes realizados e os resultados obtidos estão publicados em um trabalho no International Symposium on Circuits and Systems do IEEE (ISCAS 2017): Sousa e Del-Moral-Hernandez (2017b). Finalmente, apresentam-se a seguir as contribuições avaliadas como de menor impacto, em comparação com as contribuições já descritas, ou ainda incipientes (e que possibilitam continuidades da pesquisa em trabalhos futuros), sendo relacionadas a seguir como contribuições complementares: * Pesquisa de literatura científica sobre o estado-da-arte da área da Engenharia de Sistemas Neurais Artificiais. * Identificação de grupos internacionais de pesquisa de execução do SOM em hardware, os quais foram reconhecidos por publicarem regularmente seus estudos sobre diferentes tipos de implementações e categorias de circuitos computacionais. * Enumeração das justificativas e motivações mais frequentes na literatura para o processamento de sistemas neurais de computação em hardware. * Comparação e contraste das características de microprocessadores, GPUs, FPGAs e ASICs (tais como, custo médio do componente, paralelismo computacional oferecido e consumo típico de energia) para contextualização do tipo de aplicações que a escolha pela pesquisa com o dispositivo FPGA possibilita. * Levantamento das propriedades de computação do SOM em hardware mais frequentemente utilizadas nas pesquisas publicadas na literatura, tais como, quantidade de bits usados nos cálculos, tipo de representação de dados e arquitetura típica dos circuitos de execução das diferentes etapas de processamento do SOM. * Comparação do consumo de área do FPGA e da velocidade de processamento entre a execução da função de vizinhança tradicional gaussiana e a função de vizinhança proposta neste trabalho (com resultados obtidos de aproximadamente 4 vezes menos área do chip e 5 vezes mais velocidade de operação). * Caracterização do aumento dos recursos consumidos no chip e da velocidade de operação do sistema, em relação à implementação do SOM com diferentes complexidades (quantidade de estágios decrescentes do fator de aprendizado e da abertura da função de vizinhança) e comparação destas propriedades da arquitetura proposta em relação aos valores publicados na literatura. * Proposta de uma nova métrica para caracterização do erro topográfico na configuração final do SOM após o treinamento.In the context of design electrical circuits for processing artificial neural networks, this work focuses on the study of Self-Organizing Maps (SOM) executed on FPGA chips. The work attempts to answer the following question: how should the computational architecture be designed to efficiently implement in FPGA each one of the SOM processing steps? More specifically, this thesis investigates the distinct possibilities that different SOM computing architectures offer, regarding the processing speed, the consumption of FPGA resources and the consistency to the theory that underlies this neural network model. The motivation of the present work is enabling the development of neural processing systems that exhibit the positive features typically associate to hardware implementations, such as, embedded processing and computational acceleration. MAIN CONTRIBUITIONS In the course of the investigation, the present work generated contributions with different degrees of impact. The most essential contribution from the point of view of structuring the research process is the theoretical basis of the hardware-oriented SOM properties. This is important because it allowed the construction of the foundations for the study of different circuit architectures, so that the developments remained consistent with the theory that underpins the neural computing model. Another major contribution is the proposal of a processor circuit for implementing SOM in FPGA, which is the state-of-the-art in computational speed measured in CUPS (Connections Updated Per Second). This processor allows achieving 52.67 GCUPS, during the training phase of the SOM, which means a gain of 100%, approximately, in relation to other published works. The acceleration enabled by the FPGA parallel processing developed in this work reaches three to four orders of magnitude compared with software implementations of the SOM with the same configuration. The highlights made in the text indicate pieces of writing that synthesize the idea presented. The last main contribution of the work is the characterization of the FPGA-based SOM. This evaluation is important because, although similar, the computing processes of neural models in hardware are not necessarily identical to the same processes implemented in software. Hence, this contribution can be described as the analysis of the impact of the implemented changes, regarding the FPGA-based SOM compared to traditional algorithms. The comparison was performed evaluating the measures of topographic and quantization errors for the outputs produced by both implementations. This work also generated medium impact contributions, which can be divided into two groups: empirical and theoretical. The first empirical contribution is the survey of SOM applications which can be made possible by hardware implementations. The papers presented in this survey are classified according to their research area - such as Industry, Robotics and Medicine - and, in general, they use SOM in applications that require computational speed or embedded processing. Therefore, the continuity of their developments is benefited by direct hardware implementations of the neural network. The other two empirical contributions are the applications employed for testing the circuits developed. The first application is related to the reception of telecommunications signals and aims to identify 16-QAM and 64-QAM symbols. These two modulation techniques are used in a variety of applications with mobility requirements, such as cell phones, digital TV on portable devices and Wi-Fi. The SOM is used to identify QAM distorted signals received with noise. This research work was published in the Springer Journal on Neural Computing and Applications: Sousa; Pires e Del-Moral-Hernandez (2017). The second is an image processing application and it aims to recognize human actions captured by video cameras. Autonomous image processing performed by FPGA chips inside video cameras can be used in different scenarios, such as automatic surveillance systems or remote assistance in public areas. This second application is also characterized by demanding high performance from the computing architectures. All the theoretical contributions with medium impact are related to the study of the properties of hardware circuits for implementing the SOM model. The first of these is the proposal of an FPGA-based neighborhood function. The aim of the proposal is to develop a computational function to be implemented on chip that enables an efficient alternative to both: the Gaussian function (traditionally employed in the SOM training process) and the rectangular function (used rudimentary in the first published works on hardware-based SOMs). The second of those contributions is the detailed description of the basic components and blocks used to compute the different steps of the SOM algorithm in hardware. The description of the processing architecture includes its internal circuits and computed functions, allowing the future works to use the architecture proposed. This detailed and functional description was accepted for publication in the IEEE World Congress on Computational Intelligence (WCCI 2018): Sousa et al. (2018). The development of an FPGA distributed implementation model for the SOM composes the third of those contributions. Such a model allows an execution of the neural network learning and operational phases without the use of a central control unit. The proposal achieves a global self-organizing behavior only by using local data exchanges among the neighboring processing elements. The description and characterization of the distributed model are published in a paper in the IEEE International Joint Conference on Neural Networks (IJCNN 2017): Sousa e Del-Moral-Hernandez (2017a). The last contribution of this group is the comparison between different FPGA architectures for implementing the SOM. This comparison has the function of evaluating and contrasting three different SOM architectures: the distributed model, the centralized model and the hybrid model. The tests performed and the results obtained are published in an article in the IEEE International Symposium on Circuits and Systems (ISCAS 2017): Sousa e Del-Moral-Hernandez (2017b). Finally, the contributions assessed as having a minor impact, compared to contributions already described, or still incipient (and which allow the continuity of the research in possible future works), are presented as complementary contributions: * Research in the scientific literature on the state-of-the-art works in the field of Artificial Neural Systems Engineering. * Identification of the international research groups on hardware-based SOM, which were recognized for regularly publishing their studies on different types of implementations and categories of computational circuits. * Enumeration of the justifications and motivations often mentioned in works on hardware developments of neural computing systems. * Comparison and contrast of the characteristics of microprocessors, GPUs, FPGAs and ASICs (such as, average cost, parallelism and typical power consumption) to contextualize the type of applications enabled by the choice of FPGA as the target device. * Survey of literature for the most commonly hardware properties used for computing the SOM, such as the number of bits used in the calculations, the type of data representation and the typical architectures of the FPGA circuits. * Comparison of the FPGA resources consumption and processing speed between the execution of the traditional Gaussian neighborhood function and the proposed alternative neighborhood function (with obtained results of approximately 4 times less chip area and 5 times more computational speed). * Characterization of the increase in chip resources consumptions and the decrease in system speeds, according to the implementations of the SOM with different complexities (such as, the number of stages in learning factor and the width of the neighborhood function). Comparison of these properties between the proposed architecture and the works published in the literature. * Proposal of a new metric for the characterization of the topographic error in the final configuration of the SOM after the training phase
    corecore