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Interconnections between electronic circuits and neural computation have been a strongly researched topic in themachine learning
field in order to approach several practical requirements, including decreasing training and operation times in high performance
applications and reducing cost, size, and energy consumption for autonomous or embedded developments. Field programmable
gate array (FPGA) hardware shows some inherent features typically associated with neural networks, such as, parallel processing,
modular executions, and dynamic adaptation, and works on different types of FPGA-based neural networks were presented in
recent years. This paper aims to address different aspects of architectural characteristics analysis on a Hopfield Neural Network
implemented in FPGA, such as maximum operating frequency and chip-area occupancy according to the network capacity. Also,
the FPGA implementation methodology, which does not employ multipliers in the architecture developed for the Hopfield neural
model, is presented, in detail.

1. Introduction

For nearly 50 years, artificial neural networks (ANNs) have
been applied to a wide variety of problems in engineering
and scientific fields, such as, function approximation, systems
control, pattern recognition, and pattern retrieval [1, 2].
Most of those applications were designed using software
simulations of the networks, but, recently, some studies were
developed in order to extend the computational simulations
by directly implementing ANNs in hardware [3].

Although there were some works reporting network
implementations in analog circuits [4] and in optical devices
[5], most of the researches in ANNs hardware implemen-
tations were developed using digital technologies. General-
purpose processors and application-specific integrated cir-
cuits (ASICs) are the two technologies usually employed in
such developments. While general-purpose processors are
often chosen due to economic motivations, ASIC imple-
mentations provide an adequate solution to execute parallel
architectures of neural networks [6].

In the last decade, however, FPGA-based neurocomput-
ers have become a topic of strong interest due to the larger
capabilities and lower costs of reprogrammable logic devices
[7]. Other relevant reasons to choose FPGA, reported in the
literature, include high performance requirement which is
obtained with parallel processing on hardware systems when
compared to sequential processing in software implemen-
tations [8], reduction of power consumption in robotics or
general embedded applications [9], and the maintenance of
the flexibility of software simulations while prototyping. In
this particular feature, FPGA presents advantages over ASIC
neurocomputers because of the decreased hardware cost and
circuit development period.

Among several studies on different network models
implemented on electronic circuits, just recently were pub-
lished in the literature works on the hardware implementa-
tions addressing specifically the Hopfield Neural Networks
(HNNs). Those works usually aimed to approach the reso-
lution of a target problem, such as, image pattern recognition
[10], identification of DNA motifs [11], or video compression
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[12] and only few studies concentrated on the peculiar
features about FPGA implementations of HNN [13], which,
unlike others neural architectures, is fully connected.

Driven by such motivation, the present work does the
analysis of the chip occupied area according to the quantity
of HNN’s nodes and the precision required to represent
its internal parameters. The paper is organized as follows.
Next section briefly reviews the concepts of the network
proposed by Hopfield, Section 3 describes details of the
implementation strategy, and the last two sections present the
results, conclusions, and discussions raised by this work.

2. Hopfield Neural Network

TheHNN is a single-layer network with output feedback and
dynamic behavior, in which the weight matrix𝑊, connecting
all its𝑁 neurons, can be calculated by
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the neuron’s activation always leads to a convergence to stable
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activation is updated according to
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where 𝑔(⋅) is a sign function of the neural potential 𝑈
𝑖
and

𝑉
𝑖
∈ {−1; +1}.
The model, proposed by Hopfield in 1982 [15], can also

be interpreted as a content-addressable memory (CAM) due
to its ability to restore prior-memorized patterns from initial
inputs corresponding to noisy and/or partial versions of
such stored patterns. The CAM storage capacity𝑀 increases
according to 𝑁, and, with allowance for a small fraction
of errors; references [16, 17] demonstrated the following
relation:

𝑀 = 0.14𝑁. (3)

2.1. Application-Dependent Parameters. Thenumber of nodes
𝑁 of the Hopfield architecture is defined by the length of
the binary strings stored by the associative memory, which
is specific to each application. For example, when using the
associative architecture for the storage of binary images with
𝑁 pixels, the number of neural nodes has to be𝑁 [14].

With respect to 𝑀, which is the number of stored
patterns in the associative Hopfield architecture, each one
with length 𝑁 bits, it is also defined by the requirements of
the application:𝑀 is the number of distinct patterns relevant
for the associative process. In the case of storage of images of

decimal digits, for example,𝑀 will be 10. Notice though that
the theoretical study of the Hopfield architectures indicates
that we need to have a reasonable relationship between the
number of stored patterns𝑀 and the size of the architecture
𝑁. According to [16], when 𝑀 increases beyond 0.14𝑁 it
results in significant degradation of the associative memory
performance, and we say that the storage capacity of the
architecture is exceeded.

3. Implementation Architecture

The FPGA-based HNN’s digital system developed is depicted
in Figure 1 and consists of a control unit (CU) and a data
flow (DF)which implements the processes shown in the block
diagram of Figure 2.

3.1. Data Flow. The input unit of Figure 2 receives the
prompting input patterns and allows the update of neural
activation 𝑉

𝑖
, according to the architecture illustrated by

Figure 3, comprised of registers (R) andmultiplexers (MUX).
The weight unit (Figure 2) is designed to execute the

computation of 𝑊
𝑗𝑖
𝑉
𝑖
without employing multipliers. The

process is executed by registering the values of +𝑊
𝑗𝑖
and −𝑊

𝑗𝑖

and selecting between them based on the 𝑉
𝑖
state (−1 or +1).

Figure 4 depicts the partial architecture of the weight unit,
focusing on the implementation of the calculus involved in a
specific neuron (neuron #1).

From Figure 4, it can be noticed that the proposed system
implements the asynchronous version of the HNN, since the
weight unit is designed in order to compute one weighted
value (𝑊𝑌

𝑖
) at a time.

The summation unit, in Figure 2, performs the function
𝑔(𝑈
𝑖
) by inverting the signal bit resulting from the sum of the

weighted neural activations𝑉
𝑖
and feeding it back to the input

unit. The architecture of this unit is shown in Figure 5.
The architecture of the final block in Figure 2, the output

unit, is depicted in Figure 6. The unit outputs the state of
activation for the entire network if a stable state is reached;
that is, 𝑉

𝑖
(𝑡) = 𝑉

𝑖
(𝑡 + 1) for 𝑖 = {1, 2, . . . , 𝑁}. The termination

condition is identified by a comparison between the network
state at the beginning and the network state at the end of an
operational epoch, that is, after updating all neurons.

Finally, Figure 7 presents the circuitry used to implement
the computations concerning one neuron. The illustration
covers a single neuron (neuron #1) and depicts the inter-
connections between input, weight, and summation units.
Connections to output unit are not shown.

3.2. Control Unit. The control unit is designed to activate the
sequence of registers in data flow (Figure 1).More specifically,
after the capture-input is triggered, the signals originated by
control unit enable RIN and R

𝑌
in input unit, R

𝑊𝑌
in weight

unit, and RADDER in summation unit, sequentially. Control
unit also generates the selection signals for the multiplexers
in input unit to admit external data entrance only in the
first cycle of operation and, in weight unit, in order to
enable the computation of each neuron. At the end of an
operational cycle, control signals are generated by the unit for
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Figure 1: FPGA-based HNN’s digital system.
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Figure 2: Data flow block diagram.
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Figure 3: Input unit.
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Figure 4: Weight unit.

the purpose of allowing comparisons between initial and final
neural activations patterns of the entire network, in order to
detect convergence. Algorithm 1 summarizes control unit by
presenting the pseudocode of the state machine.

3.3. Dimensions of the Registers. Internal parameters of the
network use two’s complement representation and, due to the
high number of interconnections in HNNs, it is important to
establish the size of weight registers. From (1), the maximum
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Figure 5: Summation unit.
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Figure 6: Output unit.
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Figure 7: Proposed FPGA implementation of neuron #1.

weight value is ±𝑀, when all elements of the vector describ-
ing the stable states programmed contribute with identical
values. Therefore, the length of weight registers (𝐿

𝑊
) can be

calculated by

𝐿
𝑊
= 2 + log

2
|𝑀| . (4)

The two bits added are due to the necessity of representing
the actual number expressed by𝑀 and do not represent only
𝑀 different states along with the weight signal. Equation (4)
can be rewritten as a function of𝑁, according to (3) by

𝐿
𝑊
= 2 + log

2
0.14𝑁 (5)

with𝑁 always a positive number.

Also, in order to prevent overflows while registering the
weighted summations, it is possible to calculate, from (2),
the maximum value of 𝑈

𝑖
, in a network with 𝑁 neurons, as

±𝑀(𝑁 − 1). From the capacity analysis described by (3), the
number of bits to register𝑈 value can be written as a function
of the quantity of neurons by

𝐿
𝑈
= 1 + log

2
((𝑁
2
− 𝑁) 0.14) , (6)

where 𝐿
𝑈
denotes the length of 𝑈 registers. The bit added is

due to the representation of the 𝑈 signal.
Also, in order to save space on the FPGA, only half

of the 𝑤
𝑖𝑗
are stored. Since, as mentioned earlier, 𝑤

𝑗𝑖
=

𝑤
𝑖𝑗
, the registered weights are used twice in the present

implementation [13].
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State 0: wait for capture-button
(i) user input

State 1: ENENT = 1; SELINT-EXT = 0;
(i) input data admission

State 2: EN
𝑌
= 1; SELINT-EXT = 0;

(i) set initial 𝑉
𝑖
state

State 3: ENBEGIN-EPOCH = 1; SELINT-EXT = 1;
(i) register 𝑉

𝑖
state at the begin of an epoch

(ii) 𝑆𝐸𝐿
𝐼𝑁𝑇-𝐸𝑋𝑇 = 1 while not end

State 4: EN
𝑊𝑌
𝑖 = 1; SELINT-EXT = count neuron;

State 5: ENADDER = 1;
State 6: EN

𝑌
𝑖 = 1; if count neuron = neuron size

then next state = State 7;
else next state = State 4; ++ count neuron; ++ 𝑖;

State 7: ENEND-EPOCH = 1;
(i) register 𝑉

𝑖
state at the end of an epoch

if converge = 1 then next state = State 0;
else next state = State 3;

end;

Algorithm 1: Pseudocode of control unit.

Figure 8: Simulation of the HNN, converging in approximately 1.3𝜇s to the stored stable state: “000011110000”.

4. Results and Discussions
This section presents the set of experiments conducted in
order to obtain some relevant parameters of the HNN imple-
mentation on FPGA, such as, maximum operating frequency
and chip-area occupancy, in function of the quantity of
neurons.The target device chosen to embed the network was
the Spartan3E XC3S250E from Xilinx Inc. The choice was
made aiming to employ a device with similar features to other
published works [10, 13], that is, a FPGA with approximately
equal numbers of logic cells and system gates.

The parameters set for the first experiment were 𝑁 =
16 neurons, 𝑀 = 2 patterns, 𝐿

𝑤
= 3 bits, and 𝐿

𝑢
= 6

bits. According to ISE Project Navigator 13.1 used to design
the proposed architecture, the maximum frequency was
81.390MHz and the digital system occupied 197 slices, which
means 8% of the space available on the chip. Figure 8 contains
the network response to a prompting input pattern with
Hamming distance from a stable state equal to 7 corrupted
bits in the prompting condition. The figure shows that the
network reached the convergence in approximately 1.3 𝜇s,
which is equivalent to 100 clock cycles.

In order to allow a graphic visualization of other exper-
iments conducted, Figures 9 and 10 are presented. In this
experiment, the parameters were set to 𝑁 = 32 neurons,

𝑀 = 4 patterns, 𝐿
𝑤
= 5 bits, and 𝐿

𝑢
= 9 bits. Figures 9

and 10 depict two stable states stored by the HNN (left side of
the pictures) and the prompting inputs applied to the network
with some corrupted bits (right side of the pictures).The first
stored pattern, in Figure 9, represents the letter “U” and the
second stored pattern, in Figure 10, represents number “5.”
Both input patterns applied to the network have Hamming
distance from stored patterns equal to 10 corrupted bits and
were successfully restored by the developed system.

Table 1 shows the information obtained from the exper-
iments conducted. The table contains the parameters 𝑁
and 𝑀 for the sequence of HNNs implemented and the
information on maximum frequency and maximum output
time after clock and number of occupied slices for each
implementation. Also, in order to better visualize the data,
Figures 11 and 12 illustrate the maximum frequency and
the number of occupied slices graphically, according to the
network size.

From the obtained data, it can be seen that the archi-
tecture developed takes, at most, 4.144 ns to produce an
output after the clock input, independently of the network
configuration. Such stability is due to the parallel architecture
implemented, because increments of neurons to the network
do not increase the depth of the proposed circuit and,
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Table 1: Parameters obtained from the experiments.

Implementation
𝑁—𝑀

(Quantity of neurons and
stored patterns)

Maximum frequency
(MHz)

Maximum output time
after clock (ns) Number of occupied slices

1 16—2 81.390 4.114 8%
2 17—2 62.530 4.114 17%
3 18—2 56.047 4.114 18%
4 19—2 56.182 4.114 19%
5 20—2 51.635 4.114 20%
6 21—2 51.750 4.114 21%
7 22—3 47.115 4.114 26%
8 23—3 47.124 4.114 32%
9 24—3 43.883 4.114 34%
10 25—3 42.754 4.114 39%
11 26—3 40.069 4.114 41%
12 27—3 40.138 4.114 45%
13 28—3 37.818 4.114 47%
14 29—4 39.200 4.114 18%
15 30—4 36.892 4.114 18%
16 31—4 35.462 4.114 20%
17 32—4 33.553 4.114 18%

Figure 9: Illustration of one pattern memorized by the HNN representing letter “U” (left) and its corrupted version applied to the network
(right). After convergence, the system outputted the stored pattern (left) successfully.

therefore, do not increase the maximum output time after
clock.

As expected, a decrease of the systemmaximum input fre-
quency according to the addition of neurons to the network
can be seen in Figure 11. This decrement is due to a greater
spread in the distribution of the FPGA resources caused by
the increased number of logic elements and interconnections
used in the network architecture.

The chip-area occupancy, however, presents a significant
decrease between 13th and 14th implementation, despite the
addition of a neuron to the network, as shown in Figure 12.
Such occurrence is due to the increased number of patterns
memorized by the network. The aggregation of one neuron,

from 28 to 29 units, between experiments 13 and 14 (Table 1),
allows the network to store one more pattern, rising from
3 to 4 stable states, which generates only even values of
weights (no odd values are possible), according to (1). Even
values represented in binary format have zeroes for the least
significant bit.This enables the FPGA synthesis tool to reduce
the entire logic chain employed to implement the presented
architecture.

Lastly, an experiment was conducted in order to compare
the proposed strategy of employing multiplexers instead
of multipliers to calculate 𝑊

𝑗𝑖
𝑉
𝑖
with common approach.

The experiment consisted in implementing the target circuit
of the weight unit (Section 3.1) using both architectures,
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Figure 10: Illustration of one patternmemorized by the HNN representing number “5” (left) and its corrupted version applied to the network
(right). After convergence, the system outputted the stored pattern (left) successfully.
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multiplexers and multipliers, for the first and the last trials
of Table 1. In the first implementation (𝑁 = 16 neurons,
𝐿
𝑤
= 3 bits), the use of multiplexers allows a reduction of

71 occupied slices on the chip. For the 17th implementation
in Table 1 (𝑁 = 32 neurons, 𝐿

𝑤
= 5 bits), the proposed

architecture allows a saving of 128 slices in the weight unit
when compared to the use of common multipliers.

5. Conclusions
The present paper details a methodology for implementing
the asynchronous version of the Hopfield Neural Network
on an FPGA. The proposed architecture avoids the use of
multipliers by using an array of multiplexers and does not
store duplicated weights on the chip. Along with the proposal
of the digital system, an approach to estimate the length
of registers involved in the network design is presented. A
set of experiments with the developed neural chip shows
the decrease of the maximum operating frequency allowed
in function of the quantity of neurons. On the other hand,
an interesting observation is that the chip-area utilization
does not always increase according to the enlargement of
the network size; it also depends on other variables, as the
weightmatrix and the number of stored patterns of theHNN.
The present purpose allows the implementation of larger
networks on the chip by properly setting such parameters.
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