62 research outputs found

    The role of renin-angiotensin-aldosterone system polymorphisms in phenotypic expression of MYBPC3-related hypertrophic cardiomyopathy

    Get PDF
    The phenotypic variability of hypertrophic cardiomyopathy (HCM) in patients with identical pathogenic mutations suggests additional modifiers. In view of the regulatory role in cardiac function, blood pressure, and electrolyte homeostasis, polymorphisms in the renin-angiotensin-aldosterone system (RAAS) are candidates for modifying phenotypic expression. In order to investigate whether RAAS polymorphisms modulate HCM phenotype, we selected a large cohort of carriers of one of the three functionally equivalent truncating mutations in the MYBPC3 gene. Family-based association analysis was performed to analyze the effects of five candidate RAAS polymorphisms (ACE, rs4646994; AGTR1, rs5186; CMA, rs1800875; AGT, rs699; CYP11B2, rs1799998) in 368 subjects carrying one of the three mutations in the MYBPC3 gene. Interventricular septum (IVS) thickness and Wigle score were assessed by 2D-echocardiography. SNPs in the RAAS system were analyzed separately and combined as a pro-left ventricular hypertrophy (LVH) score for effects on the HCM phenotype. Analyzing the five polymorphisms separately for effects on IVS thickness and Wigle score detected two modest associations. Carriers of the CC genotype in the AGT gene had less pronounced IVS thickness compared with CT and TT genotype carriers. The DD polymorphism in the ACE gene was associated with a high Wigle score (P=0.01). No association was detected between the pro-LVH score and IVS thickness or Wigle score. In conclusion, in contrast to previous studies, in our large study population of HCM patients with functionally equivalent mutations in the MYBPC3 gene we did not find major effects of genetic variation within the genes of the RAAS system on phenotypic expression of HCM

    Clinical characteristics and electrophysiologic properties of SCN5A variants in fever-induced Brugada syndrome

    Get PDF
    Brugada syndrome (BrS) is a severe inherited arrhythmia syndrome that can be unmasked by fever. A multicentre clinical analysis was performed in 261 patients diagnosed with fever-induced BrS, including 198 (75.9%) and 27 (10.3%) patients who received next-generation genetic sequencing and epicardial arrhythmogenic substrate (AS) mapping, respectively. In fever-induced BrS patients, pathogenic or likely pathogenic (P/LP) SCN5A variant carriers developed fever-induced BrS at a younger age, and more often in females and those of Caucasian descent. They exhibited significant electrophysical abnormalities, including a larger epicardial AS area, and more prolonged abnormal epicardial electrograms. During a median follow-up of 50.5 months (quartiles 32.5-81.5 months) after the diagnosis, major cardiac events (MCE) occurred in 27 (14.4%) patients. Patients with P/LP SCN5A variants had a higher ratio of MCE compared with the rest. Additionally, history of syncope, QRS duration, and Tpe interval could also predict an increased risk for future MCE according to univariate analysis. Multivariate analysis indicated that only P/LP SCN5A variants were independent significant predictors of MCE. Computational structural modelling showed that most variants are destabilizing, suggesting that Nav1.5 structure destabilization caused by SCN5A missense variants may contribute to fever-induced BrS. In our cohort, P/LP SCN5A variant carriers with fever-induced BrS are more prevalent among patients of Caucasian descent, females, and younger patients. These patients exhibit aggressive electrophysiological abnormalities and worse outcome, which warrants closer monitoring and more urgent management of fever. None. [Abstract copyright: Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.

    Clinical characteristics and electrophysiologic properties of SCN5A variants in fever-induced Brugada syndrome

    Get PDF
    Background Brugada syndrome (BrS) is a severe inherited arrhythmia syndrome that can be unmasked by fever. Methods A multicentre clinical analysis was performed in 261 patients diagnosed with fever-induced BrS, including 198 (75.9%) and 27 (10.3%) patients who received next-generation genetic sequencing and epicardial arrhythmogenic substrate (AS) mapping, respectively. Findings In fever-induced BrS patients, pathogenic or likely pathogenic (P/LP) SCN5A variant carriers developed fever-induced BrS at a younger age, and more often in females and those of Caucasian descent. They exhibited significant electrophysical abnormalities, including a larger epicardial AS area, and more prolonged abnormal epicardial electrograms. During a median follow-up of 50.5 months (quartiles 32.5–81.5 months) after the diagnosis, major cardiac events (MCE) occurred in 27 (14.4%) patients. Patients with P/LP SCN5A variants had a higher ratio of MCE compared with the rest. Additionally, history of syncope, QRS duration, and Tpe interval could also predict an increased risk for future MCE according to univariate analysis. Multivariate analysis indicated that only P/LP SCN5A variants were independent significant predictors of MCE. Computational structural modelling showed that most variants are destabilizing, suggesting that Nav1.5 structure destabilization caused by SCN5A missense variants may contribute to fever-induced BrS. Interpretation In our cohort, P/LP SCN5A variant carriers with fever-induced BrS are more prevalent among patients of Caucasian descent, females, and younger patients. These patients exhibit aggressive electrophysiological abnormalities and worse outcome, which warrants closer monitoring and more urgent management of fever

    Clinical Characteristics and Electrophysiologic Properties of SCN5A Variants in Fever-Induced Brugada Syndrome

    Get PDF
    Background: Brugada syndrome (BrS) is a severe inherited arrhythmia syndrome that can be unmasked by fever. Methods: A multicentre clinical analysis was performed in 261 patients diagnosed with fever-induced BrS, including 198 (75.9%) and 27 (10.3%) patients who received next-generation genetic sequencing and epicardial arrhythmogenic substrate (AS) mapping, respectively. Findings: In fever-induced BrS patients, pathogenic or likely pathogenic (P/LP) SCN5A variant carriers developed fever-induced BrS at a younger age, and more often in females and those of Caucasian descent. They exhibited significant electrophysical abnormalities, including a larger epicardial AS area, and more prolonged abnormal epicardial electrograms. During a median follow-up of 50.5 months (quartiles 32.5-81.5 months) after the diagnosis, major cardiac events (MCE) occurred in 27 (14.4%) patients. Patients with P/LP SCN5A variants had a higher ratio of MCE compared with the rest. Additionally, history of syncope, QRS duration, and Tpe interval could also predict an increased risk for future MCE according to univariate analysis. Multivariate analysis indicated that only P/LP SCN5A variants were independent significant predictors of MCE. Computational structural modelling showed that most variants are destabilizing, suggesting that Nav1.5 structure destabilization caused by SCN5A missense variants may contribute to fever-induced BrS. Interpretation: In our cohort, P/LP SCN5A variant carriers with fever-induced BrS are more prevalent among patients of Caucasian descent, females, and younger patients. These patients exhibit aggressive electrophysiological abnormalities and worse outcome, which warrants closer monitoring and more urgent management of fever. Funding: None

    BIO FOr CARE: biomarkers of hypertrophic cardiomyopathy development and progression in carriers of Dutch founder truncating MYBPC3 variants—design and status

    Get PDF
    Background: Hypertrophic cardiomyopathy (HCM) is the most prevalent monogenic heart disease, commonly caused by truncating variants in the MYBPC3 gene. HCM is an important cause of sudden cardiac death; however, overall prognosis is good and penetrance in genotype-positive individuals is incomplete. The underlying mechanisms are poorly understood and risk stratification remains limited. Aim: To create a nationwide cohort of carriers of truncating MYBPC3 variants for identification of predictive biomarkers for HCM development and progression. Methods: In the multicentre, observational BIO FOr CARe (Identification of BIOmarkers of hypertrophic cardiomyopathy development and progression in Dutch MYBPC3 FOunder variant CARriers) cohort, carriers of the c.2373dupG, c.2827C > T, c.2864_2865delCT and c.3776delA MYBPC3 variants are included and prospectively undergo longitudinal blood collection. Clinical data are collected from first presentation onwards. The primary outcome constitutes a composite endpoint of HCM progression (maximum wall thickness ≥ 20 mm, septal reduction therapy, heart failure occurrence, sustained ventricular arrhythmia and sudden cardiac death). Results: So far, 250 subjects (median age 54.9 years (interquartile range 43.3, 66.6), 54.8% male) have been included. HCM was diagnosed in 169 subjects and dilated cardiomyopathy in 4. The primary outcome was met in 115 subjects. Blood samples were collected from 131 subjects. Conclusion: BIO FOr CARe is a genetically homogeneous, phenotypically heterogeneous cohort incorporating a clinical data registry and longitudinal blood collection. This provides a unique opportunity to study biomarkers for HCM development and prognosis. The established infrastructure can be extended to study other genetic variants. Other centres are invited to join our consortium

    Isotopic signatures of methane emissions from tropical fires, agriculture and wetlands: the MOYA and ZWAMPS flights.

    Get PDF
    We report methane isotopologue data from aircraft and ground measurements in Africa and South America. Aircraft campaigns sampled strong methane fluxes over tropical papyrus wetlands in the Nile, Congo and Zambezi basins, herbaceous wetlands in Bolivian southern Amazonia, and over fires in African woodland, cropland and savannah grassland. Measured methane δ13CCH4 isotopic signatures were in the range -55 to -49‰ for emissions from equatorial Nile wetlands and agricultural areas, but widely -60 ± 1‰ from Upper Congo and Zambezi wetlands. Very similar δ13CCH4 signatures were measured over the Amazonian wetlands of NE Bolivia (around -59‰) and the overall δ13CCH4 signature from outer tropical wetlands in the southern Upper Congo and Upper Amazon drainage plotted together was -59 ± 2‰. These results were more negative than expected. For African cattle, δ13CCH4 values were around -60 to -50‰. Isotopic ratios in methane emitted by tropical fires depended on the C3 : C4 ratio of the biomass fuel. In smoke from tropical C3 dry forest fires in Senegal, δ13CCH4 values were around -28‰. By contrast, African C4 tropical grass fire δ13CCH4 values were -16 to -12‰. Methane from urban landfills in Zambia and Zimbabwe, which have frequent waste fires, had δ13CCH4 around -37 to -36‰. These new isotopic values help improve isotopic constraints on global methane budget models because atmospheric δ13CCH4 values predicted by global atmospheric models are highly sensitive to the δ13CCH4 isotopic signatures applied to tropical wetland emissions. Field and aircraft campaigns also observed widespread regional smoke pollution over Africa, in both the wet and dry seasons, and large urban pollution plumes. The work highlights the need to understand tropical greenhouse gas emissions in order to meet the goals of the UNFCCC Paris Agreement, and to help reduce air pollution over wide regions of Africa. This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 2)'

    Isotopic signatures of methane emissions from tropical fires, agriculture and wetlands: the MOYA and ZWAMPS flights

    Get PDF
    We report methane isotopologue data from aircraft and ground measurements in Africa and South America. Aircraft campaigns sampled strong methane fluxes over tropical papyrus wetlands in the Nile, Congo and Zambezi basins, herbaceous wetlands in Bolivian southern Amazonia, and over fires in African woodland, cropland and savannah grassland. Measured methane δ13CCH4 isotopic signatures were in the range −55 to −49‰ for emissions from equatorial Nile wetlands and agricultural areas, but widely −60 ± 1‰ from Upper Congo and Zambezi wetlands. Very similar δ13CCH4 signatures were measured over the Amazonian wetlands of NE Bolivia (around −59‰) and the overall δ13CCH4 signature from outer tropical wetlands in the southern Upper Congo and Upper Amazon drainage plotted together was −59 ± 2‰. These results were more negative than expected. For African cattle, δ13CCH4 values were around −60 to −50‰. Isotopic ratios in methane emitted by tropical fires depended on the C3 : C4 ratio of the biomass fuel. In smoke from tropical C3 dry forest fires in Senegal, δ13CCH4 values were around −28‰. By contrast, African C4 tropical grass fire δ13CCH4 values were −16 to −12‰. Methane from urban landfills in Zambia and Zimbabwe, which have frequent waste fires, had δ13CCH4 around −37 to −36‰. These new isotopic values help improve isotopic constraints on global methane budget models because atmospheric δ13CCH4 values predicted by global atmospheric models are highly sensitive to the δ13CCH4 isotopic signatures applied to tropical wetland emissions. Field and aircraft campaigns also observed widespread regional smoke pollution over Africa, in both the wet and dry seasons, and large urban pollution plumes. The work highlights the need to understand tropical greenhouse gas emissions in order to meet the goals of the UNFCCC Paris Agreement, and to help reduce air pollution over wide regions of Africa. This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 2)'.Natural Environment Research Council (NERC): NE/S00159X/1; NE/N016238/1; NE/P019641/

    Isotopic signatures of methane emissions from tropical fires, agriculture and wetlands : The MOYA and ZWAMPS flights

    Get PDF
    We report methane isotopologue data from aircraft and ground measurements in Africa and South America. Aircraft campaigns sampled strong methane fluxes over tropical papyrus wetlands in the Nile, Congo and Zambezi basins, herbaceous wetlands in Bolivian southern Amazonia, and over fires in African woodland, cropland and savannah grassland. Measured methane δ 13 C CH 4 isotopic signatures were in the range -55 to -49‰ for emissions from equatorial Nile wetlands and agricultural areas, but widely -60 ± 1‰ from Upper Congo and Zambezi wetlands. Very similar δ 13 C CH 4 signatures were measured over the Amazonian wetlands of NE Bolivia (around -59‰) and the overall δ 13 C CH 4 signature from outer tropical wetlands in the southern Upper Congo and Upper Amazon drainage plotted together was -59 ± 2‰. These results were more negative than expected. For African cattle, δ 13 C CH 4 values were around -60 to -50‰. Isotopic ratios in methane emitted by tropical fires depended on the C3: C4 ratio of the biomass fuel. In smoke from tropical C3 dry forest fires in Senegal, δ 13 C CH 4 values were around -28‰. By contrast, African C4 tropical grass fire δ 13 C CH 4 values were -16 to -12‰. Methane from urban landfills in Zambia and Zimbabwe, which have frequent waste fires, had δ 13 C CH 4 around -37 to -36‰. These new isotopic values help improve isotopic constraints on global methane budget models because atmospheric δ 13 C CH 4 values predicted by global atmospheric models are highly sensitive to the δ 13 C CH 4 isotopic signatures applied to tropical wetland emissions. Field and aircraft campaigns also observed widespread regional smoke pollution over Africa, in both the wet and dry seasons, and large urban pollution plumes. The work highlights the need to understand tropical greenhouse gas emissions in order to meet the goals of the UNFCCC Paris Agreement, and to help reduce air pollution over wide regions of Africa. This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 2)'

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio

    Centrality evolution of the charged-particle pseudorapidity density over a broad pseudorapidity range in Pb-Pb collisions at root s(NN)=2.76TeV

    Get PDF
    Peer reviewe
    corecore