23 research outputs found

    Causal relationship between obesity and vitamin d status : Bi-directional mendelian randomization analysis of multiple cohorts

    Get PDF
    Background: Obesity is associated with vitamin D deficiency, and both are areas of active public health concern. We explored the causality and direction of the relationship between body mass index (BMI) and 25-hydroxyvitamin D [25(OH)D] using genetic markers as instrumental variables (IVs) in bi-directional Mendelian randomization (MR) analysis. Methods and Findings: We used information from 21 adult cohorts (up to 42,024 participants) with 12 BMI-related SNPs (combined in an allelic score) to produce an instrument for BMI and four SNPs associated with 25(OH)D (combined in two allelic scores, separately for genes encoding its synthesis or metabolism) as an instrument for vitamin D. Regression estimates for the IVs (allele scores) were generated within-study and pooled by meta-analysis to generate summary effects. Associations between vitamin D scores and BMI were confirmed in the Genetic Investigation of Anthropometric Traits (GIANT) consortium (n = 123,864). Each 1 kg/m2 higher BMI was associated with 1.15% lower 25(OH)D (p = 6.52610227). The BMI allele score was associated both with BMI (p = 6.30610262) and 25(OH)D (20.06% [95% CI 20.10 to 20.02], p = 0.004) in the cohorts that underwent meta-analysis. The two vitamin D allele scores were strongly associated with 25(OH)D (p#8.07610257 for both scores) but not with BMI (synthesis score, p = 0.88; metabolism score, p = 0.08) in the meta-analysis. A 10% higher genetically instrumented BMI was associated with 4.2% lower 25(OH)D concentrations (IV ratio: 24.2 [95% CI 27.1 to 21.3], p = 0.005). No association was seen for genetically instrumented 25(OH)D with BMI, a finding that was confirmed using data from the GIANT consortium (p$0.57 for both vitamin D scores). Conclusions: On the basis of a bi-directional genetic approach that limits confounding, our study suggests that a higher BMI leads to lower 25(OH)D, while any effects of lower 25(OH)D increasing BMI are likely to be small. Population level interventions to reduce BMI are expected to decrease the prevalence of vitamin D deficiency

    Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals.

    Get PDF
    Circulating proteins are vital in human health and disease and are frequently used as biomarkers for clinical decision-making or as targets for pharmacological intervention. Here, we map and replicate protein quantitative trait loci (pQTL) for 90 cardiovascular proteins in over 30,000 individuals, resulting in 451 pQTLs for 85 proteins. For each protein, we further perform pathway mapping to obtain trans-pQTL gene and regulatory designations. We substantiate these regulatory findings with orthogonal evidence for trans-pQTLs using mouse knockdown experiments (ABCA1 and TRIB1) and clinical trial results (chemokine receptors CCR2 and CCR5), with consistent regulation. Finally, we evaluate known drug targets, and suggest new target candidates or repositioning opportunities using Mendelian randomization. This identifies 11 proteins with causal evidence of involvement in human disease that have not previously been targeted, including EGF, IL-16, PAPPA, SPON1, F3, ADM, CASP-8, CHI3L1, CXCL16, GDF15 and MMP-12. Taken together, these findings demonstrate the utility of large-scale mapping of the genetics of the proteome and provide a resource for future precision studies of circulating proteins in human health

    Genome-wide association study in 79,366 European-ancestry individuals informs the genetic architecture of 25-hydroxyvitamin D levels

    Get PDF
    Vitamin D is a steroid hormone precursor that is associated with a range of human traits and diseases. Previous GWAS of serum 25-hydroxyvitamin D concentrations have identified four genome-wide significant loci (GC, NADSYN1/DHCR7, CYP2R1, CYP24A1). In this study, we expand the previous SUNLIGHT Consortium GWAS discovery sample size from 16,125 to 79,366 (all European descent). This larger GWAS yields two additional loci harboring genome-wide significant variants (P = 4.7x10(-9) at rs8018720 in SEC23A, and P = 1.9x10(-14) at rs10745742 in AMDHD1). The overall estimate of heritability of 25-hydroxyvitamin D serum concentrations attributable to GWAS common SNPs is 7.5%, with statistically significant loci explaining 38% of this total. Further investigation identifies signal enrichment in immune and hematopoietic tissues, and clustering with autoimmune diseases in cell-type-specific analysis. Larger studies are required to identify additional common SNPs, and to explore the role of rare or structural variants and gene-gene interactions in the heritability of circulating 25-hydroxyvitamin D levels.Peer reviewe

    Large meta-analysis of genome-wide association studies identifies five loci for lean body mass

    Get PDF
    Lean body mass, consisting mostly of skeletal muscle, is important for healthy aging. We performed a genome-wide association study for whole body (20 cohorts of European ancestry with n = 38,292) and appendicular (arms and legs) lean body mass (n = 28,330) measured using dual energy X-ray absorptiometry or bioelectrical impedance analysis, adjusted for sex, age, height, and fat mass. Twenty-one single-nucleotide polymorphisms were significantly associated with lean body mass either genome wide (p < 5 x 10(-8)) or suggestively genome wide (p < 2.3 x 10(-6)). Replication in 63,475 (47,227 of European ancestry) individuals from 33 cohorts for whole body lean body mass and in 45,090 (42,360 of European ancestry) subjects from 25 cohorts for appendicular lean body mass was successful for five single-nucleotide polymorphisms in/ near HSD17B11, VCAN, ADAMTSL3, IRS1, and FTO for total lean body mass and for three single-nucleotide polymorphisms in/ near VCAN, ADAMTSL3, and IRS1 for appendicular lean body mass. Our findings provide new insight into the genetics of lean body mass

    New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk

    Get PDF
    To increase our understanding of the genetic basis of adiposity and its links to cardiometabolic disease risk, we conducted a genome-wide association meta-analysis of body fat percentage (BF%) in up to 100,716 individuals. Twelve loci reached genome-wide significance (P <5 x 10(-8)), of which eight were previously associated with increased overall adiposity (BMI, BF%) and four (in or near COBLL1/GRB14, IGF2BP1, PLA2G6, CRTC1) were novel associations with BF%. Seven loci showed a larger effect on BF% than on BMI, suggestive of a primary association with adiposity, while five loci showed larger effects on BMI than on BF%, suggesting association with both fat and lean mass. In particular, the loci more strongly associated with BF% showed distinct cross-phenotype association signatures with a range of cardiometabolic traits revealing new insights in the link between adiposity and disease risk.Peer reviewe

    Embolischer Verschluß der Arteria femoralis nach Magenresektion

    No full text

    Myeloperoxidase and related biomarkers are suggestive footprints of endothelial microvascular inflammation in HFpEF patients

    No full text
    International audienceAims In heart failure (HF) with preserved ejection fraction (HFpEF), microvascular inflammation is proposed as an underlying mechanism. Myeloperoxidase (MPO) is associated with vascular dysfunction and prognosis in congestive HF. Methods and results MPO, MPO-related biomarkers, and echocardiography were assessed in 86 patients, 4-8 weeks after presentation with acute HF (EF >= 45%), and in 46 healthy controls. Patients were followed up for median 579 days (Q1;Q3 276;1178) regarding the composite endpoint all-cause mortality or HF hospitalization. Patients were 73 years old, 51% were female, EF was 64% (Q1;Q3 58;68), E/e ' was ratio 10.8 (8.3;14.0), and left atrial volume index (LAVI) was 43 mL/m(2) (38;52). Controls were 60 (57;62) years old (vs. patients; P 14, uric acid and SDMA were elevated (421 vs. 344 mu M, P = 0.012; 0.54 vs. 0.47 mu M, P = 0.039, respectively), and MPO was 121 vs. 98 ng/mL (P = 0.090). The ratios of arginine/ADMA (112 vs. 162; P < 0.001) and ADMA/SDMA (1.36 vs. 1.17; P = 0.002) were decreased in HFpEF patients, suggesting reduced NO availability and increased enzymatic clearance of ADMA, respectively. Uric acid independently predicted the endpoint [hazard ratio (HR) 3.76 (95% CI 1.19-11.85; P = 0.024)] but not MPO [HR 1.48 (95% CI 0.70-3.14; P = 0.304)] or the other biomarkers. Conclusions In HFpEF, MPO-dependent oxidative stress reflected by uric acid and calprotectin is increased, and SDMA is associated with diastolic dysfunction and uric acid with outcome. This suggests microvascular neutrophil involvement mirroring endothelial dysfunction, a central component of the HFpEF syndrome and a potential treatment target

    Conbase : a software for unsupervised discovery of clonal somatic mutations in single cells through read phasing

    No full text
    Accurate variant calling and genotyping represent major limiting factors for downstream applications of single-cell genomics. Here, we report Conbase for the identification of somatic mutations in single-cell DNA sequencing data. Conbase leverages phased read data from multiple samples in a dataset to achieve increased confidence in somatic variant calls and genotype predictions. Comparing the performance of Conbase to three other methods, we find that Conbase performs best in terms of false discovery rate and specificity and provides superior robustness on simulated data, in vitro expanded fibroblasts and clonal lymphocyte populations isolated directly from a healthy human donor.De fem första författarna delar förstaförfattarskapet.De två sista författarna delar sistaförfattarskapet.</p
    corecore