1,378 research outputs found

    The impact of cave lighting on the bioluminescent display of the Tasmanian glow-worm Arachnocampa tasmaniensis

    Get PDF
    Bioluminescent larvae of the dipteran genus Arachnocampa are charismatic microfauna that can reach high densities in caves, where they attract many visitors. These focal populations are the subjects of conservation management because of their high natural and commercial value. Despite their tourism importance, little is known about their susceptibility and resilience to natural or human impacts. At Marakoopa Cave in northern Tasmania, guided tours take visitors through different chambers and terminate at a viewing platform where the cave lighting is extinguished and a glowing colony of Arachnocampa tasmaniensis (Diptera: Keroplatidae) larvae on the chamber ceiling is revealed. Research has shown that exposure to artificial light can cause larvae to douse or dim their bioluminescence; hence, the cave lighting associated with visitor access could reduce the intensity of the natural display. We used time-lapse digital photography to record light output over 10 days to determine whether cave lighting affects the intensity or rhythmicity of bioluminescence. Simultaneously, another colony in a different section of the cave, away from tourist activity, was photographed over 3 days. Both colonies showed high-amplitude 24 h cycling of bioluminescence intensity, with the peak occurring at 11.50 h at the unvisited site and 12.50 h at the main chamber, so the time of peak display did not appear to be substantially affected by light exposure. Intermittent light exposure experienced by larvae in the main chamber caused detectable reductions in bioluminescence intensity; however, recovery was rapid and the overall shape of the daily bioluminescence curve closely matched that of the unvisited colony. In conclusion, the artificial light exposure regime used in Marakoopa Cave does not have a substantial effect on the timing or quality of the bioluminescence display. The time-lapse photographic monitoring method could be permanently implemented at focal tourism sites to provide information about daily, seasonal and annual fluctuations in the displays, the response to events such as drought and flood, and the population's ability to recover from adverse conditions

    The Galactic Center Black Hole Laboratory

    Full text link
    The super-massive 4 million solar mass black hole Sagittarius~A* (SgrA*) shows flare emission from the millimeter to the X-ray domain. A detailed analysis of the infrared light curves allows us to address the accretion phenomenon in a statistical way. The analysis shows that the near-infrared flare amplitudes are dominated by a single state power law, with the low states in SgrA* limited by confusion through the unresolved stellar background. There are several dusty objects in the immediate vicinity of SgrA*. The source G2/DSO is one of them. Its nature is unclear. It may be comparable to similar stellar dusty sources in the region or may consist predominantly of gas and dust. In this case a particularly enhanced accretion activity onto SgrA* may be expected in the near future. Here the interpretation of recent data and ongoing observations are discussed.Comment: 30 pages - 7 figures - accepted for publication by Springer's "Fundamental Theories of Physics" series; summarizing GC contributions of 2 conferences: 'Equations of Motion in Relativistic Gravity' at the Physikzentrum Bad Honnef, Bad Honnef, Germany, (Feb. 17-23, 2013) and the COST MP0905 'The Galactic Center Black Hole Laboratory' Granada, Spain (Nov. 19 - 22, 2013

    A New Era in the Quest for Dark Matter

    Full text link
    There is a growing sense of `crisis' in the dark matter community, due to the absence of evidence for the most popular candidates such as weakly interacting massive particles, axions, and sterile neutrinos, despite the enormous effort that has gone into searching for these particles. Here, we discuss what we have learned about the nature of dark matter from past experiments, and the implications for planned dark matter searches in the next decade. We argue that diversifying the experimental effort, incorporating astronomical surveys and gravitational wave observations, is our best hope to make progress on the dark matter problem.Comment: Published in Nature, online on 04 Oct 2018. 13 pages, 1 figur

    Crystal structures of the NO sensor NsrR reveal how its iron-sulfur cluster modulates DNA binding

    Get PDF
    NsrR from Streptomyces coelicolor (Sc) regulates the expression of three genes through the progressive degradation of its [4Fe–4S] cluster on nitric oxide (NO) exposure. We report the 1.95 Å resolution crystal structure of dimeric holo-ScNsrR and show that the cluster is coordinated by the three invariant Cys residues from one monomer and, unexpectedly, Asp8 from the other. A cavity map suggests that NO displaces Asp8 as a cluster ligand and, while D8A and D8C variants remain NO sensitive, DNA binding is affected. A structural comparison of holo-ScNsrR with an apo-IscR-DNA complex shows that the [4Fe–4S] cluster stabilizes a turn between ScNsrR Cys93 and Cys99 properly oriented to interact with the DNA backbone. In addition, an apo ScNsrR structure suggests that Asn97 from this turn, along with Arg12, which forms a salt-bridge with Asp8, are instrumental in modulating the position of the DNA recognition helix region relative to its major groove

    Search For Heavy Pointlike Dirac Monopoles

    Get PDF
    We have searched for central production of a pair of photons with high transverse energies in ppˉp\bar p collisions at s=1.8\sqrt{s} = 1.8 TeV using 70pb170 pb^{-1} of data collected with the D\O detector at the Fermilab Tevatron in 1994--1996. If they exist, virtual heavy pointlike Dirac monopoles could rescatter pairs of nearly real photons into this final state via a box diagram. We observe no excess of events above background, and set lower 95% C.L. limits of 610,870,or1580GeV/c2610, 870, or 1580 GeV/c^2 on the mass of a spin 0, 1/2, or 1 Dirac monopole.Comment: 12 pages, 4 figure

    Complex temporal climate signals drive the emergence of human water-borne disease

    Get PDF
    Predominantly occurring in developing parts of the world, Buruli ulcer is a severely disabling mycobacterium infection which often leads to extensive necrosis of the skin. While the exact route of transmission remains uncertain, like many tropical diseases, associations with climate have been previously observed and could help identify the causative agent's ecological niche. In this paper, links between changes in rainfall and outbreaks of Buruli ulcer in French Guiana, an ultraperipheral European territory in the northeast of South America, were identified using a combination of statistical tests based on singular spectrum analysis, empirical mode decomposition and cross-wavelet coherence analysis. From this, it was possible to postulate for the first time that outbreaks of Buruli ulcer can be triggered by combinations of rainfall patterns occurring on a long (i.e., several years) and short (i.e., seasonal) temporal scale, in addition to stochastic events driven by the El Nino-Southern Oscillation that may disrupt or interact with these patterns. Long-term forecasting of rainfall trends further suggests the possibility of an upcoming outbreak of Buruli ulcer in French Guiana

    Search for High Mass Photon Pairs in p-pbar --> gamma-gamma-jet-jet Events at sqrt(s)=1.8 TeV

    Get PDF
    A search has been carried out for events in the channel p-barp --> gamma gamma jet jet. Such a signature can characterize the production of a non-standard Higgs boson together with a W or Z boson. We refer to this non-standard Higgs, having standard model couplings to vector bosons but no coupling to fermions, as a "bosonic Higgs." With the requirement of two high transverse energy photons and two jets, the diphoton mass (m(gamma gamma)) distribution is consistent with expected background. A 90(95)% C.L. upper limit on the cross section as a function of mass is calculated, ranging from 0.60(0.80) pb for m(gamma gamma) = 65 GeV/c^2 to 0.26(0.34) pb for m(gamma gamma) = 150 GeV/c^2, corresponding to a 95% C.L. lower limit on the mass of a bosonic Higgs of 78.5 GeV/c^2.Comment: 9 pages, 3 figures. Replacement has new H->gamma gamma branching ratios and corresponding new mass limit

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV

    Search for the standard model Higgs boson at LEP

    Get PDF
    corecore