257 research outputs found

    Initial Conditions for Models of Dynamical Systems

    Full text link
    The long-time behaviour of many dynamical systems may be effectively predicted by a low-dimensional model that describes the evolution of a reduced set of variables. We consider the question of how to equip such a low-dimensional model with appropriate initial conditions, so that it faithfully reproduces the long-term behaviour of the original high-dimensional dynamical system. Our method involves putting the dynamical system into normal form, which not only generates the low-dimensional model, but also provides the correct initial conditions for the model. We illustrate the method with several examples. Keywords: normal form, isochrons, initialisation, centre manifoldComment: 24 pages in standard LaTeX, 66K, no figure

    Design of synthetic promoters for controlled expression of therapeutic genes in retinal pigment epithelial cells

    Get PDF
    Age‐related macular degeneration (AMD) associated with dysfunction of retinal pigment epithelial (RPE) cells is the most common cause of untreatable blindness. To advance gene therapy as a viable treatment for AMD there is a need for technologies that enable controlled, RPE‐specific expression of therapeutic genes. Here we describe design, construction and testing of compact synthetic promoters with a pre‐defined transcriptional activity and RPE cell specificity. Initial comparative informatic analyses of RPE and photoreceptor (PR) cell transcriptomic data identified conserved and overrepresented transcription factor regulatory elements (TFREs, 8–19 bp) specifically associated with transcriptionally active RPE genes. Both RPE‐specific TFREs and those derived from the generically active cytomegalovirus‐immediate early (CMV‐IE) promoter were then screened in vitro to identify sequence elements able to control recombinant gene transcription in model induced pluripotent stem (iPS)‐derived and primary human RPE cells. Two libraries of heterotypic synthetic promoters varying in predicted RPE specificity and transcriptional activity were designed de novo using combinations of up to 20 discrete TFREs in series (323–602 bp) and their transcriptional activity in model RPE cells was compared to that of the endogenous BEST1 promoter (661 bp, plus an engineered derivative) and the highly active generic CMV‐IE promoter (650 bp). Synthetic promoters with a highpredicted specificity, comprised predominantly of endogenous TFREs exhibited a range of activities up to 8‐fold that of the RPE‐specific BEST1 gene promoter. Moreover, albeit at a lower predicted specificity, synthetic promoter transcriptional activity in model RPE cells was enhanced beyond that of the CMV‐IE promoter when viral elements were utilized in combination with endogenous RPE‐specific TFREs, with a reduction in promoter size of 15%. Taken together, while our data reveal an inverse relationship between synthetic promoter activity and cell‐type specificity, cell context‐specific control of recombinant gene transcriptional activity may be achievable

    Myosin-I nomenclature

    Get PDF
    We suggest that the vertebrate myosin-I field adopt a common nomenclature system based on the names adopted by the Human Genome Organization (HUGO). At present, the myosin-I nomenclature is very confusing; not only are several systems in use, but several different genes have been given the same name. Despite their faults, we believe that the names adopted by the HUGO nomenclature group for genome annotation are the best compromise, and we recommend universal adoption

    A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007

    Get PDF
    We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.Comment: 19 pages, 8 figures, science summary page at http://www.ligo.org/science/Publication-S5LV_ANTARES/index.php. Public access area to figures, tables at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120000

    Integrated Brain Atlas for Unbiased Mapping of Nervous System Effects Following Liraglutide Treatment

    Get PDF
    Light Sheet Fluorescence Microscopy (LSFM) of whole organs, in particular the brain, offers a plethora of biological data imaged in 3D. This technique is however often hindered by cumbersome non-Automated analysis methods. Here we describe an approach to fully automate the analysis by integrating with data from the Allen Institute of Brain Science (AIBS), to provide precise assessment of the distribution and action of peptide-based pharmaceuticals in the brain. To illustrate this approach, we examined the acute central nervous system effects of the glucagon-like peptide-1 (GLP-1) receptor agonist liraglutide. Peripherally administered liraglutide accessed the hypothalamus and brainstem, and led to activation in several brain regions of which most were intersected

    A Measurement of the Proton Structure Function F ⁣2(x,Q2)F_{\!2}(x,Q^2)

    Full text link
    A measurement of the proton structure function F ⁣2(x,Q2)F_{\!2}(x,Q^2) is reported for momentum transfer squared Q2Q^2 between 4.5 GeV2GeV^2 and 1600 GeV2GeV^2 and for Bjorken xx between 1.8⋅10−41.8\cdot10^{-4} and 0.13 using data collected by the HERA experiment H1 in 1993. It is observed that F ⁣2F_{\!2} increases significantly with decreasing xx, confirming our previous measurement made with one tenth of the data available in this analysis. The Q2Q^2 dependence is approximately logarithmic over the full kinematic range covered. The subsample of deep inelastic events with a large pseudo-rapidity gap in the hadronic energy flow close to the proton remnant is used to measure the "diffractive" contribution to F ⁣2F_{\!2}.Comment: 32 pages, ps, appended as compressed, uuencoded fil

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society

    Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)

    Get PDF
    [no abstract available
    • 

    corecore