460 research outputs found

    Age-dependent relationships between multiple sexual pigments and condition in males and females

    Get PDF
    The reliability of sexual signaling may change across age classes due to shifts in resource allocation patterns. Two contrasting hypotheses exist regarding how the condition dependence of ornaments may shift with age, and both have received empirical support. On one hand, ornaments may more reliably reflect condition and quality in older individuals, because younger individuals of high quality invest in survival over signaling effort. On the other hand, the condition dependence of ornaments may decline with age, if older individuals in poor condition terminally invest in ornaments, or if resource constraints decline with age. Further, the expression and condition dependence of different ornaments may shift with age in unique ways, such that multifaceted sexual displays maintain reliable signaling across age classes. In yellow warblers (Setophaga petechia) of both sexes, we assessed how relationships between carotenoid-and phaeomelanin-based sexual pigmentation, prenesting body reserves, and condition at molt (reflected by growth bars and feather quality) vary across age classes. Melanin coverage correlated with condition at molt across age classes in males and showed high repeatability in both sexes. In contrast, carotenoid saturation increased longitudinally with age in males and correlated with condition at molt in different age classes in the 2 sexes. Specifically, carotenoid saturation correlated positively with condition at molt in younger, but not older males, whereas in females, the situation was reversed, with a positive correlation present only in older females. Results suggest that age-dependent signaling may promote maintenance of multifaceted sexual displays and that agedependent signaling dynamics depend on sex. © The Author 2013. Published by Oxford University Press on behalf of the International Society for Behavioral Ecology. All rights reserved

    Microguards and micromessengers of the genome

    Get PDF
    The regulation of gene expression is of fundamental importance to maintain organismal function and integrity and requires a multifaceted and highly ordered sequence of events. The cyclic nature of gene expression is known as ‘transcription dynamics’. Disruption or perturbation of these dynamics can result in significant fitness costs arising from genome instability, accelerated ageing and disease. We review recent research that supports the idea that an important new role for small RNAs, particularly microRNAs (miRNAs), is in protecting the genome against short-term transcriptional fluctuations, in a process we term ‘microguarding’. An additional emerging role for miRNAs is as ‘micromessengers’—through alteration of gene expression in target cells to which they are trafficked within microvesicles. We describe the scant but emerging evidence that miRNAs can be moved between different cells, individuals and even species, to exert biologically significant responses. With these two new roles, miRNAs have the potential to protect against deleterious gene expression variation from perturbation and to themselves perturb the expression of genes in target cells. These interactions between cells will frequently be subject to conflicts of interest when they occur between unrelated cells that lack a coincidence of fitness interests. Hence, there is the potential for miRNAs to represent both a means to resolve conflicts of interest, as well as instigate them. We conclude by exploring this conflict hypothesis, by describing some of the initial evidence consistent with it and proposing new ideas for future research into this exciting topic

    BAC-Based Sequencing of Behaviorally-Relevant Genes in the Prairie Vole

    Get PDF
    The prairie vole (Microtus ochrogaster) is an important model organism for the study of social behavior, yet our ability to correlate genes and behavior in this species has been limited due to a lack of genetic and genomic resources. Here we report the BAC-based targeted sequencing of behaviorally-relevant genes and flanking regions in the prairie vole. A total of 6.4 Mb of non-redundant or haplotype-specific sequence assemblies were generated that span the partial or complete sequence of 21 behaviorally-relevant genes as well as an additional 55 flanking genes. Estimates of nucleotide diversity from 13 loci based on alignments of 1.7 Mb of haplotype-specific assemblies revealed an average pair-wise heterozygosity (8.4×10−3). Comparative analyses of the prairie vole proteins encoded by the behaviorally-relevant genes identified >100 substitutions specific to the prairie vole lineage. Finally, our sequencing data indicate that a duplication of the prairie vole AVPR1A locus likely originated from a recent segmental duplication spanning a minimum of 105 kb. In summary, the results of our study provide the genomic resources necessary for the molecular and genetic characterization of a high-priority set of candidate genes for regulating social behavior in the prairie vole

    Surgical anatomy of the lower eyelid relating to lower blepharoplasty

    Get PDF
    The aim of this review is to familiarize the reader with the critical lower eyelid anatomy as is related to lower blepharoplasty or a midface lift. The contents include 1) the lacrimal canaliculus in the lower eyelid: the depth and width (diameter) of the vertical portion were 2.58±0.24 mm and 0.44±0.07 mm, respectively. A vertical portion of the canaliculus was about 1 mm (1.11±0.16 mm) deep, and the horizontal portion was about 2~3 mm (2.08±2.74 mm) long 2 mm below the mucocutaneous junction, which is where an incision may be made when performing epicanthoplasty. 2) Motor innervation to the lower orbiculis oculi muscle: the pretarsal and preseptal OOMs were innervated by five to seven terminal twigs of the zygomatic branches of the facial nerve that approached the muscle at a right angle. The mean horizontal distance between the lateral canthus and the zygomatic branch was 2.31±0.29 cm (range: 1.7~2.7 cm) and the vertical distance was 1.20±0.20 cm (range: 0.8~1.5 cm). 3) Sensory innervation of the lower eyelid skin: the majority of the terminal branches (93.8%) of the ION were distributed to the medial to the lateral canthus. Most (99.4%) of the terminal branches of the ZFN were distributed to lateral to the lateral canthus. 4) Retractor of the lower eyelid; capsulopalpebral fascia (CPF): the orbital septum blended with the CPF most closely at 3.7~5.4 mm beneath the lower tarsal border and differently at 3.7±0.7 mm on the medial limbus line, 4.3±0.8 mm on the midpupillary line and 5.4±1.0 mm on the lateral limbus line. 5) Arcuate expansion (AE): The AE was a fibrous band expanding from the inferolateral orbital rim to the medial canthal ligament. A sector (fan-shaped) of the AE originated in the angle of 5 to 80 degrees at the circumference of the inferolateral orbital rim circle, falling within the range of 3 to 5.5 o'clock, and then it tapered and attached to the inferior border of the medial canthal ligament. 6) Suborbicularis oculi fat (SOOF) in the lower eyelid: the SOOF was located in the inferolateral side of the orbit within a range between medial +15 and lateral -89 degrees to a vertical midpupillary line. Histologically, the SOOF was situated deep to the Orbicularis oculi muscle and superficial to the orbital septum and periosteum. The SOOF consisted more of fibrofatty tissue rather than being the pure fatty nature like orbital fat. I hope surgeons can achieve desirable outcomes with the knowledge reviewed in this article

    Dysfunctional play and dopamine physiology in the Fischer 344 rat

    Full text link
    Juvenile Fischer 344 rats are known to be less playful than other inbred strains, although the neurobiological substrate(s) responsible for this phenotype is uncertain. In the present study, Fischer 344 rats were compared to the commonly used outbred Sprague-Dawley strain on several behavioral and physiological parameters in order to ascertain whether the lack of play may be related to compromised activity of brain dopamine (DA) systems. As expected, Fischer 344 rats were far less playful than Sprague-Dawley rats, with Fischer 344 rats less likely to initiate playful contacts with a playful partner and less likely to respond playfully to these contacts. We also found that Fischer 344 rats showed less of a startle response and greater pre-pulse inhibition (PPI), especially at higher prepulse intensities. The increase in PPI seen in the Fischer 344 rat could be due to reduced DA modulation of sensorimotor gating and neurochemical measures were consistent with Fischer 344 rats releasing less DA than Sprague-Dawley rats. Fast scan cyclic voltammetry (FSCV) revealed Fischer 344 rats had less evoked DA release in dorsal and ventral striatal brain slices and high-performance liquid chromatography revealed Fischer 344 rats to have less DA turnover in the striatum and prefrontal cortex. We also found DA-dependent forms of cortical plasticity were deficient in the striatum and prefrontal cortex of the Fischer 344 rat. Taken together, these data indicate that deficits in play and enhanced PPI of Fischer 344 rats may be due to reduced DA modulation of corticostriatal and mesolimbic/mesocortical circuits critical to the execution of these behaviors

    A Virulent Wolbachia Infection Decreases the Viability of the Dengue Vector Aedes aegypti during Periods of Embryonic Quiescence

    Get PDF
    A new approach for dengue control has been proposed that relies on life-shortening strains of the obligate intracellular bacterium Wolbachia pipientis to modify mosquito population age structure and reduce pathogen transmission. Previously we reported the stable transinfection of the major dengue vector Aedes aegypti with a life-shortening Wolbachia strain (wMelPop-CLA) from the vinegar fly Drosophila melanogaster. Here, we report a further characterization of the phenotypic effects of this virulent Wolbachia infection on several life-history traits of Ae. aegypti. Minor costs of wMelPop-CLA infection for pre-imaginal survivorship, development and adult size were found. However, we discovered that the wMelPop-CLA infection dramatically decreased the viability of desiccated Ae. aegypti eggs over time. Similarly, the reproductive fitness of wMelPop-CLA infected Ae. aegypti females declined with age. These results reveal a general pattern associated with wMelPop-CLA induced pathogenesis in this mosquito species, where host fitness costs increase during aging of both immature and adult life-history stages. In addition to influencing the invasion dynamics of this particular Wolbachia strain, we suggest that the negative impact of wMelPop-CLA on embryonic quiescence may have applied utility as a tool to reduce mosquito population size in regions with pronounced dry seasons or in regions that experience cool winters

    Relative Effectiveness of Mating Success and Sperm Competition at Eliminating Deleterious Mutations in Drosophila melanogaster

    Get PDF
    Condition-dependence theory predicts that sexual selection will facilitate adaptation by selecting against deleterious mutations that affect the expression of sexually selected traits indirectly via condition. Recent empirical studies have provided support for this prediction; however, their results do not elucidate the relative effects of pre- and postcopulatory sexual selection on deleterious mutations. We used the Drosophila melanogaster model system to discern the relative contributions of pre- and postcopulatory processes to selection against deleterious mutations. To assess second-male ejaculate competition success (P2; measured as the proportion of offspring attributable to the experimental male) and mating success, mutant and wild-type male D. melanogaster were given the opportunity to mate with females that were previously mated to a standard competitor male. This process was repeated for males subjected to a diet quality manipulation to test for effects of environmentally-manipulated condition on P2 and mating success. While none of the tested mutations affected P2, there was a clear effect of condition. Conversely, several of the mutations affected mating success, while condition showed no effect. Our results suggest that precopulatory selection may be more effective than postcopulatory selection at removing deleterious mutations. The opposite result obtained for our diet manipulation points to an interesting discrepancy between environmental and genetic manipulations of condition, which may be explained by the multidimensionality of condition. Establishing whether the various stages of sexual selection affect deleterious mutations differently, and to what extent, remains an important issue to resolve

    Female responses to experimental removal of sexual selection components in Drosophila melanogaster

    Get PDF
    Despite the common assumption that multiple mating should in general be favored in males, but not in females, to date there is no consensus on the general impact of multiple mating on female fitness. Notably, very little is known about the genetic and physiological features underlying the female response to sexual selection pressures. By combining an experimental evolution approach with genomic techniques, we investigated the effects of single and multiple matings on female fecundity and gene expression. We experimentally manipulated the opportunity for mating in replicate populations of Drosophila melanogaster by removing components of sexual selection, with the aim of testing differences in short term post-mating effects of females evolved under different mating strategies

    Generation of Induced Pluripotent Stem Cells from the Prairie Vole

    Get PDF
    The vast majority of animals mate more or less promiscuously. A few mammals, including humans, utilize more restrained mating strategies that entail a longer term affiliation with a single mating partner. Such pair bonding mating strategies have been resistant to genetic analysis because of a lack of suitable model organisms. Prairie voles are small mouse-like rodents that form enduring pair bonds in the wild as well as in the laboratory, and consequently they have been used widely to study social bonding behavior. The lack of targeted genetic approaches in this species however has restricted the study of the molecular and neural circuit basis of pair bonds. As a first step in rendering the prairie vole amenable to reverse genetics, we have generated induced pluripotent stem cell (IPSC) lines from prairie vole fibroblasts using retroviral transduction of reprogramming factors. These IPSC lines display the cellular and molecular hallmarks of IPSC cells from other organisms, including mice and humans. Moreover, the prairie vole IPSC lines have pluripotent differentiation potential since they can give rise to all three germ layers in tissue culture and in vivo. These IPSC lines can now be used to develop conditions that facilitate homologous recombination and eventually the generation of prairie voles bearing targeted genetic modifications to study the molecular and neural basis of pair bond formation
    • …
    corecore