54 research outputs found

    Type II-P Supernovae from the SDSS-II Supernova Survey and the Standardized Candle Method

    Get PDF
    We apply the Standardized Candle Method (SCM) for Type II Plateau supernovae (SNe II-P), which relates the velocity of the ejecta of a SN to its luminosity during the plateau, to 15 SNe II-P discovered over the three season run of the Sloan Digital Sky Survey - II Supernova Survey. The redshifts of these SNe - 0.027 < z < 0.144 - cover a range hitherto sparsely sampled in the literature; in particular, our SNe II-P sample contains nearly as many SNe in the Hubble flow (z > 0.01) as all of the current literature on the SCM combined. We find that the SDSS SNe have a very small intrinsic I-band dispersion (0.22 mag), which can be attributed to selection effects. When the SCM is applied to the combined SDSS-plus-literature set of SNe II-P, the dispersion increases to 0.29 mag, larger than the scatter for either set of SNe separately. We show that the standardization cannot be further improved by eliminating SNe with positive plateau decline rates, as proposed in Poznanski et al. (2009). We thoroughly examine all potential systematic effects and conclude that for the SCM to be useful for cosmology, the methods currently used to determine the Fe II velocity at day 50 must be improved, and spectral templates able to encompass the intrinsic variations of Type II-P SNe will be needed.Comment: Accepted for publication by ApJ; data used in this paper can be downloaded from http://sdssdp47.fnal.gov/sdsssn/photometry/SNIIp.tgz; citation errors correcte

    The Carnegie Supernova Project: First Near-Infrared Hubble Diagram to z~0.7

    Full text link
    The Carnegie Supernova Project (CSP) is designed to measure the luminosity distance for Type Ia supernovae (SNe Ia) as a function of redshift, and to set observational constraints on the dark energy contribution to the total energy content of the Universe. The CSP differs from other projects to date in its goal of providing an I-band {rest-frame} Hubble diagram. Here we present the first results from near-infrared (NIR) observations obtained using the Magellan Baade telescope for SNe Ia with 0.1 < z < 0.7. We combine these results with those from the low-redshift CSP at z <0.1 (Folatelli et al. 2009). We present light curves and an I-band Hubble diagram for this first sample of 35 SNe Ia and we compare these data to 21 new SNe Ia at low redshift. These data support the conclusion that the expansion of the Universe is accelerating. When combined with independent results from baryon acoustic oscillations (Eisenstein et al. 2005), these data yield Omega_m = 0.27 +/- 0.0 (statistical), and Omega_DE = 0.76 +/- 0.13 (statistical) +/- 0.09 (systematic), for the matter and dark energy densities, respectively. If we parameterize the data in terms of an equation of state, w, assume a flat geometry, and combine with baryon acoustic oscillations, we find that w = -1.05 +/- 0.13 (statistical) +/- 0.09 (systematic). The largest source of systematic uncertainty on w arises from uncertainties in the photometric calibration, signaling the importance of securing more accurate photometric calibrations for future supernova cosmology programs. Finally, we conclude that either the dust affecting the luminosities of SNe Ia has a different extinction law (R_V = 1.8) than that in the Milky Way (where R_V = 3.1), or that there is an additional intrinsic color term with luminosity for SNe Ia independent of the decline rate.Comment: 44 pages, 23 figures, 9 tables; Accepted for publication in the Astrophysical Journa

    Near-Ultraviolet Properties of a Large Sample of Type Ia Supernovae as Observed with the Swift UVOT

    Get PDF
    We present ultraviolet (UV) and optical photometry of 26 Type Ia supernovae (SNe~Ia) observed from March 2005 to March 2008 with the NASA {\it Swift} Ultraviolet and Optical Telescope (UVOT). The dataset consists of 2133 individual observations, making it by far the most complete study of the UV emission from SNe~Ia to date. Grouping the SNe into three subclasses as derived from optical observations, we investigate the evolution of the colors of these SNe, finding a high degree of homogeneity within the normal subclass, but dramatic differences between that group and the subluminous and SN 2002cx-like groups. For the normal events, the redder UV filters on UVOT (uu, uvw1uvw1) show more homogeneity than do the bluer UV filters (uvm2uvm2, uvw2uvw2). Searching for purely UV characteristics to determine existing optically based groupings, we find the peak width to be a poor discriminant, but we do see a variation in the time delay between peak emission and the late, flat phase of the light curves. The UV light curves peak a few days before the BB band for most subclasses (as was previously reported by Jha et al. 2006a), although the SN 2002cx-like objects peak at a very early epoch in the UV. That group also features the bluest emission observed among SNe~Ia. As the observational campaign is ongoing, we discuss the critical times to observe, as determined by this study, in order to maximize the scientific output of future observations.Comment: Accepted to Astrophysical Journa

    A New Distance to The Antennae Galaxies (NGC 4038/39) Based on the Type Ia Supernova 2007sr

    Full text link
    Traditionally, the distance to NGC 4038/39 has been derived from the systemic recession velocity, yielding about 20 Mpc for H_0 = 72 km/s/Mpc. Recently, this widely adopted distance has been challenged based on photometry of the presumed tip of the red giant branch (TRGB), which seems to yield a shorter distance of 13.3+-1.0 Mpc and, with it, nearly 1 mag lower luminosities and smaller radii for objects in this prototypical merger. Here we present a new distance estimate based on observations of the Type Ia supernova (SN) 2007sr in the southern tail, made at Las Campanas Observatory as part of the Carnegie Supernova Project. The resulting distance of D(SN Ia) = 22.3+-2.8 Mpc [(m-M)_0 = 31.74+-0.27 mag] is in good agreement with a refined distance estimate based on the recession velocity and the large-scale flow model developed by Tonry and collaborators, D(flow) = 22.5+-2.8 Mpc. We point out three serious problems that a short distance of 13.3 Mpc would entail, and trace the claimed short distance to a likely misidentification of the TRGB. Reanalyzing Hubble Space Telescope (HST) data in the Archive with an improved method, we find a TRGB fainter by 0.9 mag and derive from it a preliminary new TRGB distance of D(TRGB) = 20.0+-1.6 Mpc. Finally, assessing our three distance estimates we recommend using a conservative, rounded value of D = 22+-3 Mpc as the best currently available distance to The Antennae.Comment: 8 pages, 5 figures, 1 table (emulateapj; uses amsmath package). Accepted for publication in The Astronomical Journal, Vol. 136. Figs. 1 & 2 degraded to reduce file size

    The Carnegie Supernova Project: First Photometry Data Release of Low-Redshift Type Ia Supernovae

    Get PDF
    The Carnegie Supernova Project (CSP) is a five-year survey being carried out at the Las Campanas Observatory to obtain high-quality light curves of ~100 low-redshift Type Ia supernovae in a well-defined photometric system. Here we present the first release of photometric data that contains the optical light curves of 35 Type Ia supernovae, and near-infrared light curves for a subset of 25 events. The data comprise 5559 optical (ugriBV) and 1043 near-infrared (YJHKs) data points in the natural system of the Swope telescope. Twenty-eight supernovae have pre-maximum data, and for 15 of these, the observations begin at least 5 days before B maximum. This is one of the most accurate datasets of low-redshift Type Ia supernovae published to date. When completed, the CSP dataset will constitute a fundamental reference for precise determinations of cosmological parameters, and serve as a rich resource for comparison with models of Type Ia supernovae.Comment: 93 pages, 8 figures, accepted for publication in A

    Epidemiological and microbiological investigation of a large increase in vibriosis, northern Europe, 2018

    Get PDF
    Background: Vibriosis cases in Northern European countries and countries bordering the Baltic Sea increased during heatwaves in 2014 and 2018. Aim: We describe the epidemiology of vibriosis and the genetic diversity of Vibrio spp. isolates from Norway, Sweden, Denmark, Finland, Poland and Estonia in 2018, a year with an exceptionally warm summer. Methods: In a retrospective study, we analysed demographics, geographical distribution, seasonality, causative species and severity of non-travel-related vibriosis cases in 2018. Data sources included surveillance systems, national laboratory notification databases and/or nationwide surveys to public health microbiology laboratories. Moreover, we performed whole genome sequencing and multilocus sequence typing of available isolates from 2014 to 2018 to map their genetic diversity. Results: In 2018, we identified 445 non-travel-related vibriosis cases in the study countries, considerably more than the median of 126 cases between 2014 and 2017 (range: 87-272). The main reported mode of transmission was exposure to seawater. We observed a species-specific geographical disparity of vibriosis cases across the Nordic-Baltic region. Severe vibriosis was associated with infections caused by Vibrio vulnificus (adjOR: 17.2; 95% CI: 3.3-90.5) or Vibrio parahaemolyticus (adjOR: 2.1; 95% CI: 1.0-4.5), age >= 65 years (65-79 years: adjOR: 3.9; 95% CI: 1.7-8.7; >= 80 years: adjOR: 15.5; 95% CI: 4.4-54.3) or acquiring infections during summer (adjOR: 5.1; 95% CI: 2.4-10.9). Although phylogenetic analysis revealed diversity between Vibrio spp. isolates, two V. vulnificus clusters were identified. Conclusion: Shared sentinel surveillance for vibriosis during summer may be valuable to monitor this emerging public health issue.Peer reviewe

    First-Year Spectroscopy for the SDSS-II Supernova Survey

    Get PDF
    This paper presents spectroscopy of supernovae discovered in the first season of the Sloan Digital Sky Survey-II Supernova Survey. This program searches for and measures multi-band light curves of supernovae in the redshift range z = 0.05 - 0.4, complementing existing surveys at lower and higher redshifts. Our goal is to better characterize the supernova population, with a particular focus on SNe Ia, improving their utility as cosmological distance indicators and as probes of dark energy. Our supernova spectroscopy program features rapid-response observations using telescopes of a range of apertures, and provides confirmation of the supernova and host-galaxy types as well as precise redshifts. We describe here the target identification and prioritization, data reduction, redshift measurement, and classification of 129 SNe Ia, 16 spectroscopically probable SNe Ia, 7 SNe Ib/c, and 11 SNe II from the first season. We also describe our efforts to measure and remove the substantial host galaxy contamination existing in the majority of our SN spectra.Comment: Accepted for publication in The Astronomical Journal(47pages, 9 figures

    The Distance to NGC 1316 (Fornax A) From Observations of Four Type Ia Supernovae

    Get PDF
    The giant elliptical galaxy NGC 1316 (Fornax A) is a well-studied member of the Fornax Cluster and a prolific producer of Type Ia supernovae, having hosted four observed events since 1980. Here we present detailed optical and near-infrared light curves of the spectroscopically normal SN 2006dd. These data are used, along with previously published photometry of the normal SN 1980N and SN 1981D, and the fast-declining, low-luminosity SN 2006mr, to compute independent estimates of the host reddening for each supernova, and the distance to NGC 1316. From the three normal supernovae, we find a distance of 17.8 +/- 0.3 (random) +/- 0.3 (systematic) Mpc for Ho = 72. Distance moduli derived from the "EBV" and Tripp methods give values that are mutually consistent to 4 -- 8%. Moreover, the weighted means of the distance moduli for these three SNe for three methods agree to within 3%. This consistency is encouraging and supports the premise that Type Ia supernovae are reliable distance indicators at the 5% precision level or better. On the other hand, the two methods used to estimate the distance of the fast-declining SN 2006mr both yield a distance to NGC 1316 which is 25-30% larger. This disparity casts doubt on the suitability of fast-declining events for estimating extragalactic distances. Modest-to-negligible host galaxy reddening values are derived for all four supernovae. Nevertheless, two of them (SN 2006dd and SN 2006mr) show strong NaID interstellar lines in the host galaxy system. The strength of this absorption is completely inconsistent with the small reddening values derived from the supernova light curves if the gas in NGC 1316 is typical of that found in the interstellar medium of the Milky Way. In addition, the equivalent width of the NaID lines in SN 2006dd appear to have weakened significantly some 100-150 days after explosion.Comment: 50 pages, 13 figures, 10 tables; constructive comments welcome. Accepted for publication in A
    • …
    corecore