159 research outputs found

    Search for R-parity-violating supersymmetry in events with four or more leptons in sqrt(s) =7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for new phenomena in final states with four or more leptons (electrons or muons) is presented. The analysis is based on 4.7 fb−1 of s=7  TeV \sqrt{s}=7\;\mathrm{TeV} proton-proton collisions delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in two signal regions: one that requires moderate values of missing transverse momentum and another that requires large effective mass. The results are interpreted in a simplified model of R-parity-violating supersymmetry in which a 95% CL exclusion region is set for charged wino masses up to 540 GeV. In an R-parity-violating MSUGRA/CMSSM model, values of m 1/2 up to 820 GeV are excluded for 10 < tan β < 40

    Search for high-mass resonances decaying to dilepton final states in pp collisions at s√=7 TeV with the ATLAS detector

    Get PDF
    The ATLAS detector at the Large Hadron Collider is used to search for high-mass resonances decaying to an electron-positron pair or a muon-antimuon pair. The search is sensitive to heavy neutral Z′ gauge bosons, Randall-Sundrum gravitons, Z * bosons, techni-mesons, Kaluza-Klein Z/γ bosons, and bosons predicted by Torsion models. Results are presented based on an analysis of pp collisions at a center-of-mass energy of 7 TeV corresponding to an integrated luminosity of 4.9 fb−1 in the e + e − channel and 5.0 fb−1 in the μ + μ −channel. A Z ′ boson with Standard Model-like couplings is excluded at 95 % confidence level for masses below 2.22 TeV. A Randall-Sundrum graviton with coupling k/MPl=0.1 is excluded at 95 % confidence level for masses below 2.16 TeV. Limits on the other models are also presented, including Technicolor and Minimal Z′ Models

    Search for the neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at root s=7 TeV with the ATLAS detector

    Get PDF
    A search for neutral Higgs bosons of the Minimal Supersymmetric Standard Model (MSSM) is reported. The analysis is based on a sample of proton-proton collisions at a centre-of-mass energy of 7TeV recorded with the ATLAS detector at the Large Hadron Collider. The data were recorded in 2011 and correspond to an integrated luminosity of 4.7 fb-1 to 4.8 fb-1. Higgs boson decays into oppositely-charged muon or τ lepton pairs are considered for final states requiring either the presence or absence of b-jets. No statistically significant excess over the expected background is observed and exclusion limits at the 95% confidence level are derived. The exclusion limits are for the production cross-section of a generic neutral Higgs boson, φ, as a function of the Higgs boson mass and for h/A/H production in the MSSM as a function of the parameters mA and tan β in the mhmax scenario for mA in the range of 90GeV to 500 GeV. Copyright CERN

    Trust, control and knowledge transfer in small business networks

    Get PDF
    The ability to transfer knowledge effectively in the networks of small and medium-sized firms (SMEs) is paramount for supporting firm competitiveness. Our research is the first one that explores the joint effect of trust and control mechanisms on knowledge transfer in the case of networks of SMEs. We use a multiple case study approach based on six Italian networks of SMEs. We analyse the joint impact of different ethical based trustworthiness factors—namely benevolence and integrity—and the levers of control (LOCs)—namely, belief, boundary, diagnostic and interactive LOCs—on knowledge transfer between SMEs in networks. We find that trust substitutes for the implementation of boundary, diagnostic, and belief tools, while it works jointly with interactive tools in order to support knowledge transfer. These insights not only provide a rich foundation for follow-up research, but also inform SME managers about how to increase the effectiveness and efficiency of knowledge transfer with their network partners

    The Imaging X-ray Polarimetry Explorer (IXPE) at last!

    Get PDF
    IXPE, the first observatory dedicated to imaging X-ray polarimetry, was launched on Dec 9, 2021 and is operating successfully. A partnership between NASA and the Italian Space Agencey (ASI) IXPE features three X-ray telescopes each comprised of a mirror module assembly with a polarization sensitive detector at its focus. An extending boom was deployed on orbit to provide the necessary 4 m focal length. A 3-axis-stabilized spacecraft provides power, attitude determination and control, and commanding. After one year of observation IXPE has measured statistically-significant polarization from almost all the classes of celestial sources that emit X-rays. In the following we describe the IXPE mission, reporting on its performance after 1.5 year of operations. We show the main astrophysical results which are outstanding for a SMEX mission

    The detection of polarized X-ray emission from the magnetar 1E 2259+586

    Get PDF
    We report on IXPE, NICER, and XMM–Newton observations of the magnetar 1E 2259+586. We find that the source is significantly polarized at about or above 20 per cent for all phases except for the secondary peak where it is more weakly polarized. The polarization degree is strongest during the primary minimum which is also the phase where an absorption feature has been identified previously. The polarization angle of the photons are consistent with a rotating vector model with a mode switch between the primary minimum and the rest of the rotation of the neutron star. We propose a scenario in which the emission at the source is weakly polarized (as in a condensed surface) and, as the radiation passes through a plasma arch, resonant cyclotron scattering off of protons produces the observed polarized radiation. This confirms the magnetar nature of the source with a surface field greater than about 1015 G

    A polarimetrically oriented X-ray stare at the accreting pulsar EXO 2030+375

    Get PDF
    Accreting X-ray pulsars (XRPs) are presumed to be ideal targets for polarization measurements, as their high magnetic field strength is expected to polarize the emission up to a polarization degree of 80%. However, such expectations are being challenged by recent observations of XRPs with the Imaging X-ray Polarimeter Explorer (IXPE). Here, we report on the results of yet another XRP, namely, EXO 2030+375, observed with IXPE and contemporarily monitored with Insight-HXMT and SRG/ART-XC. In line with recent results obtained with IXPE for similar sources, an analysis of the EXO 2030+375 data returns a low polarization degree of 0%- 3% in the phase-averaged study and a variation in the range of 2%- 7% in the phase-resolved study. Using the rotating vector model, we constrained the geometry of the system and obtained a value of 60 for the magnetic obliquity. When considering the estimated pulsar inclination of 130, this also indicates that the magnetic axis swings close to the observera's line of sight. Our joint polarimetric, spectral, and timing analyses hint toward a complex accreting geometry, whereby magnetic multipoles with an asymmetric topology and gravitational light bending significantly affect the behavior of the observed source

    Complex variations in X-ray polarization in the X-ray pulsar LS V +44 17/RX J0440.9+4431

    Get PDF
    We report on Imaging X-ray polarimetry explorer (IXPE) observations of the Be-transient X-ray pulsar LS V +44 17/RX J0440.9+4431 made at two luminosity levels during the giant outburst in January- February 2023. Considering the observed spectral variability and changes in the pulse profiles, the source was likely caught in supercritical and subcritical states with significantly different emission-region geometry, associated with the presence of accretion columns and hot spots, respectively. We focus here on the pulse-phase-resolved polarimetric analysis and find that the observed dependencies of the polarization degree and polarization angle (PA) on the pulse phase are indeed drastically different for the two observations. The observed differences, if interpreted within the framework of the rotating vector model (RVM), imply dramatic variations in the spin axis inclination, the position angle, and the magnetic colatitude by tens of degrees within the space of just a few days. We suggest that the apparent changes in the observed PA phase dependence are predominantly related to the presence of an unpulsed polarized component in addition to the polarized radiation associated with the pulsar itself. We then show that the observed PA phase dependence in both observations can be explained with a single set of RVM parameters defining the pulsar s geometry. We also suggest that the additional polarized component is likely produced by scattering of the pulsar radiation in the equatorial disk wind

    Discovery of X-Ray Polarization from the Black Hole Transient Swift J1727.8−1613

    Get PDF
    We report the first detection of the X-ray polarization of the bright transient Swift J1727.8−1613 with the Imaging X-ray Polarimetry Explorer. The observation was performed at the beginning of the 2023 discovery outburst, when the source resided in the bright hard state. We find a time- and energy-averaged polarization degree of 4.1% ± 0.2% and a polarization angle of 2.°2 ± 1.°3 (errors at 68% confidence level; this translates to ∼20σ significance of the polarization detection). This finding suggests that the hot corona emitting the bulk of the detected X-rays is elongated, rather than spherical. The X-ray polarization angle is consistent with that found in submillimeter wavelengths. Since the submillimeter polarization was found to be aligned with the jet direction in other X-ray binaries, this indicates that the corona is elongated orthogonal to the jet

    X-ray polarimetry of the accreting pulsar GX 301-2

    Get PDF
    The phase- and energy-resolved polarization measurements of accreting X-ray pulsars (XRPs) allow us to test different theoretical models of their emission, and they also provide an avenue to determine the emission region geometry. We present the results of the observations of the XRP GX 301-2 performed with the Imaging X-ray Polarimetry Explorer (IXPE). A persistent XRP, GX 301-2 has one of the longest spin periods known: ∼680 s. A massive hyper-giant companion star Wray 977 supplies mass to the neutron star via powerful stellar winds. We did not detect significant polarization in the phase-averaged data when using spectro-polarimetric analysis, with the upper limit on the polarization degree (PD) of 2.3% (99% confidence level). Using the phase-resolved spectro-polarimetric analysis, we obtained a significant detection of polarization (above 99% confidence level) in two out of nine phase bins and a marginal detection in three bins, with a PD ranging between ∼3% and ∼10% and a polarization angle varying in a very wide range from ∼0 to ∼160. Using the rotating vector model, we obtained constraints on the pulsar geometry using both phase-binned and unbinned analyses, finding excellent agreement. Finally, we discuss possible reasons for a low observed polarization in GX 301-2
    corecore