112 research outputs found

    Internal controls in the Talmud: The Jersusalem Temple

    Get PDF
    We examine the Hebrew Talmud\u27s account of internal controls in the ancient Jerusalem Temple (c.823 B.C.E. to 70 C.E.) This far-reaching enterprise involved an extensive system of sacrificial offerings, management of three annual pilgrimages, a court system and maintenance of a priestly class. We outline the annual process of collecting half-shekel and other donations, withdrawals from the Temple treasury and the sale of libations. The Talmud describes numerous internal controls: donations were segregated according to their specific purposes and donation chests were shaped with small openings to prevent theft. When making withdrawals from the Temple treasury, the priest-treasurer was required to wear specific clothing to prevent misappropriation of assets. The Treasury chamber itself had seven seals, requiring the presence of seven different indi­viduals, including the king, in order to open it. The process of selling libations and meal offerings required purchasing and then redeeming different tickets, which were specifically marked to prevent fraud. In explaining the reasoning for this tight system of internal controls, the Talmud reveals that an individual shall be guiltless before G-D and before Israel [Numbers 32: 22], so that a sound system of internal controls prevents both theft and any suspicion of theft, thus establishing the fiscal credibility of the Temple institution in the eyes of its congregants. Such an approach indicates that accounting did not represent a profane, secular vocation at odds with the Temple\u27s mission. To the contrary, a system of accountability formed integral steps in the Temple\u27s ritual processes

    GALEX, Optical and IR Light Curves of MQ Dra: UV Excesses at Low Accretion Rates

    Full text link
    Ultraviolet light curves constructed from NUV and FUV detectors on GALEX reveal large amplitude variations during the orbital period of the Low Accretion Rate Polar MQ Dra (SDSSJ1553+55). This unexpected variation from a UV source is similar to that seen and discussed in the Polar EF Eri during its low state of accretion, even though the accretion rate in MQ Dra is an order of magnitude lower than even the low state of EF Eri. The similarity in phasing of the UV and optical light curves in MQ Dra imply a similar location for the source of light. We explore the possibilities of hot spots and cyclotron emission with simple models fit to the UV, optical and IR light curves of MQ Dra. To match the GALEX light curves with a single temperature circular hot spot requires different sizes of spots for the NUV and FUV, while a cyclotron model that can produce the optical harmonics with a magnetic field near 60 MG requires multipoles with fields > 200 MG to match the UV fluxes.Comment: accepted for ApJ; 15 pages, 7 tables, 8 fig

    GALEX and Optical Light Curves of WX LMi, SDSSJ103100.5+202832.2 and SDSSJ121209.31+013627.7

    Full text link
    {\it GALEX} near ultraviolet (NUV) and far-ultraviolet (FUV) light curves of three extremely low accretion rate polars show distinct modulations in their UV light curves. While these three systems have a range of magnetic fields from 13 to 70 MG, and of late type secondaries (including a likely brown dwarf in SDSSJ121209.31+013627.7), the accretion rates are similar, and the UV observations imply some mechanism is operating to create enhanced emission zones on the white dwarf. The UV variations match in phase to the two magnetic poles viewed in the optical in WX LMi and to the single poles evident in the optical in SDSSJ1212109.31+013627.7 and SDSSJ103100.55+202832.2. Simple spot models of the UV light curves show that if hot spots are responsible for the UV variations, the temperatures are on the order of 10,000-14,000K. For the single pole systems, the size of the FUV spot must be smaller than the NUV and in all cases, the geometry is likely more complicated than a simple circular spot.Comment: 29 pages, 4 tables, 10 figures, Astrophysical Journal, accepte

    The Monitor project: JW 380 - a 0.26-, 0.15-M⊙, pre-main-sequence eclipsing binary in the Orion nebula cluster

    Get PDF
    We report the discovery of a low-mass (0.26 ± 0.02, 0.15 ± 0.01 M⊙) pre-main-sequence (PMS) eclipsing binary (EB) with a 5.3 d orbital period. JW 380 was detected as part of a high-cadence time-resolved photometric survey (the Monitor project) using the 2.5-m Isaac Newton Telescope and Wide Field Camera for a survey of a single field in the Orion nebula cluster (ONC) region in V and i bands. The star is assigned a 99 per cent membership probability from proper motion measurements, and radial velocity observations indicate a systemic velocity within 1σ of that of the ONC. Modelling of the combined light and radial velocity curves of the system gave stellar radii of for the primary and the secondary, with a significant third light contribution which is also visible as a third peak in the cross-correlation functions used to derive radial velocities. The masses and radii appear to be consistent with stellar models for 2-3 Myr age from several authors, within the present observational errors. These observations probe an important region of mass-radius parameter space, where there are currently only a handful of known PMS EB systems with precise measurements available in the literatur

    The Sloan Digital Sky Survey-II Supernova Survey: Search Algorithm and Follow-up Observations

    Get PDF
    The Sloan Digital Sky Survey-II Supernova Survey has identified a large number of new transient sources in a 300 sq. deg. region along the celestial equator during its first two seasons of a three-season campaign. Multi-band (ugriz) light curves were measured for most of the sources, which include solar system objects, Galactic variable stars, active galactic nuclei, supernovae (SNe), and other astronomical transients. The imaging survey is augmented by an extensive spectroscopic follow-up program to identify SNe, measure their redshifts, and study the physical conditions of the explosions and their environment through spectroscopic diagnostics. During the survey, light curves are rapidly evaluated to provide an initial photometric type of the SNe, and a selected sample of sources are targeted for spectroscopic observations. In the first two seasons, 476 sources were selected for spectroscopic observations, of which 403 were identified as SNe. For the Type Ia SNe, the main driver for the Survey, our photometric typing and targeting efficiency is 90%. Only 6% of the photometric SN Ia candidates were spectroscopically classified as non-SN Ia instead, and the remaining 4% resulted in low signal-to-noise, unclassified spectra. This paper describes the search algorithm and the software, and the real-time processing of the SDSS imaging data. We also present the details of the supernova candidate selection procedures and strategies for follow-up spectroscopic and imaging observations of the discovered sources.Comment: Accepted for publication in The Astronomical Journal (66 pages, 13 figures); typos correcte

    The Monitor project: JW 380 -- a 0.26, 0.15 Msol pre main sequence eclipsing binary in the Orion Nebula Cluster

    Full text link
    We report the discovery of a low-mass (0.26 +/- 0.02, 0.15 +/- 0.01 Msol) pre-main-sequence eclipsing binary with a 5.3 day orbital period. JW 380 was detected as part of a high-cadence time-resolved photometric survey (the Monitor project) using the 2.5m Isaac Newton Telescope and Wide Field Camera for a survey of a single field in the Orion Nebula Cluster (ONC) region in V and i bands. The star is assigned a 99 per cent membership probability from proper motion measurements, and radial velocity observations indicate a systemic velocity within 1 sigma of that of the ONC. Modelling of the combined light and radial velocity curves of the system gave stellar radii of 1.19 +0.04 -0.18 Rsol and 0.90 +0.17 -0.03 Rsol for the primary and secondary, with a significant third light contribution which is also visible as a third peak in the cross-correlation functions used to derive radial velocities. The masses and radii appear to be consistent with stellar models for 2-3 Myr age from several authors, within the present observational errors. These observations probe an important region of mass-radius parameter space, where there are currently only a handful of known pre-main-sequence eclipsing binary systems with precise measurements available in the literature.Comment: 11 pages, 9 figures, accepted for publication in MNRA

    The Carnegie Supernova Project: First Near-Infrared Hubble Diagram to z~0.7

    Full text link
    The Carnegie Supernova Project (CSP) is designed to measure the luminosity distance for Type Ia supernovae (SNe Ia) as a function of redshift, and to set observational constraints on the dark energy contribution to the total energy content of the Universe. The CSP differs from other projects to date in its goal of providing an I-band {rest-frame} Hubble diagram. Here we present the first results from near-infrared (NIR) observations obtained using the Magellan Baade telescope for SNe Ia with 0.1 < z < 0.7. We combine these results with those from the low-redshift CSP at z <0.1 (Folatelli et al. 2009). We present light curves and an I-band Hubble diagram for this first sample of 35 SNe Ia and we compare these data to 21 new SNe Ia at low redshift. These data support the conclusion that the expansion of the Universe is accelerating. When combined with independent results from baryon acoustic oscillations (Eisenstein et al. 2005), these data yield Omega_m = 0.27 +/- 0.0 (statistical), and Omega_DE = 0.76 +/- 0.13 (statistical) +/- 0.09 (systematic), for the matter and dark energy densities, respectively. If we parameterize the data in terms of an equation of state, w, assume a flat geometry, and combine with baryon acoustic oscillations, we find that w = -1.05 +/- 0.13 (statistical) +/- 0.09 (systematic). The largest source of systematic uncertainty on w arises from uncertainties in the photometric calibration, signaling the importance of securing more accurate photometric calibrations for future supernova cosmology programs. Finally, we conclude that either the dust affecting the luminosities of SNe Ia has a different extinction law (R_V = 1.8) than that in the Milky Way (where R_V = 3.1), or that there is an additional intrinsic color term with luminosity for SNe Ia independent of the decline rate.Comment: 44 pages, 23 figures, 9 tables; Accepted for publication in the Astrophysical Journa

    The Hubble Space Telescope Wide Field Camera 3 Early Release Science data: Panchromatic Faint Object Counts for 0.2-2 microns wavelength

    Get PDF
    We describe the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) Early Release Science (ERS) observations in the Great Observatories Origins Deep Survey (GOODS) South field. The new WFC3 ERS data provide calibrated, drizzled mosaics in the UV filters F225W, F275W, and F336W, as well as in the near-IR filters F098M (Ys), F125W (J), and F160W (H) with 1-2 HST orbits per filter. Together with the existing HST Advanced Camera for Surveys (ACS) GOODS-South mosaics in the BViz filters, these panchromatic 10-band ERS data cover 40-50 square arcmin at 0.2-1.7 {\mu}m in wavelength at 0.07-0.15" FWHM resolution and 0.090" Multidrizzled pixels to depths of AB\simeq 26.0-27.0 mag (5-{\sigma}) for point sources, and AB\simeq 25.5-26.5 mag for compact galaxies. In this paper, we describe: a) the scientific rationale, and the data taking plus reduction procedures of the panchromatic 10-band ERS mosaics; b) the procedure of generating object catalogs across the 10 different ERS filters, and the specific star-galaxy separation techniques used; and c) the reliability and completeness of the object catalogs from the WFC3 ERS mosaics. The excellent 0.07-0.15" FWHM resolution of HST/WFC3 and ACS makes star- galaxy separation straightforward over a factor of 10 in wavelength to AB\simeq 25-26 mag from the UV to the near-IR, respectively.Comment: 51 pages, 71 figures Accepted to ApJS 2011.01.2

    Adding the s-Process Element Cerium to the APOGEE Survey: Identification and Characterization of Ce II Lines in the H-band Spectral Window

    Get PDF
    Nine Ce ii lines have been identified and characterized within the spectral window observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey (between λ1.51 and 1.69 μm). At solar metallicities, cerium is an element that is produced predominantly as a result of the slow capture of neutrons (the s-process) during asymptotic giant branch stellar evolution. The Ce ii lines were identified using a combination of a high-resolution (R=λ/δλ=100,000R=\lambda /\delta \lambda ={\rm{100,000}}) Fourier Transform Spectrometer (FTS) spectrum of α Boo and an APOGEE spectrum (R = 22,400) of a metal-poor, but s-process enriched, red giant (2M16011638-1201525). Laboratory oscillator strengths are not available for these lines. Astrophysical gf-values were derived using α Boo as a standard star, with the absolute cerium abundance in α Boo set by using optical Ce ii lines that have precise published laboratory gf-values. The near-infrared Ce ii lines identified here are also analyzed, as consistency checks, in a small number of bright red giants using archival FTS spectra, as well as a small sample of APOGEE red giants, including two members of the open cluster NGC 6819, two field stars, and seven metal-poor N- and Al-rich stars. The conclusion is that this set of Ce ii lines can be detected and analyzed in a large fraction of the APOGEE red giant sample and will be useful for probing chemical evolution of the s-process products in various populations of the Milky Way

    The Seventh Data Release of the Sloan Digital Sky Survey

    Get PDF
    This paper describes the Seventh Data Release of the Sloan Digital Sky Survey (SDSS), marking the completion of the original goals of the SDSS and the end of the phase known as SDSS-II. It includes 11663 deg^2 of imaging data, with most of the roughly 2000 deg^2 increment over the previous data release lying in regions of low Galactic latitude. The catalog contains five-band photometry for 357 million distinct objects. The survey also includes repeat photometry over 250 deg^2 along the Celestial Equator in the Southern Galactic Cap. A coaddition of these data goes roughly two magnitudes fainter than the main survey. The spectroscopy is now complete over a contiguous area of 7500 deg^2 in the Northern Galactic Cap, closing the gap that was present in previous data releases. There are over 1.6 million spectra in total, including 930,000 galaxies, 120,000 quasars, and 460,000 stars. The data release includes improved stellar photometry at low Galactic latitude. The astrometry has all been recalibrated with the second version of the USNO CCD Astrograph Catalog (UCAC-2), reducing the rms statistical errors at the bright end to 45 milli-arcseconds per coordinate. A systematic error in bright galaxy photometr is less severe than previously reported for the majority of galaxies. Finally, we describe a series of improvements to the spectroscopic reductions, including better flat-fielding and improved wavelength calibration at the blue end, better processing of objects with extremely strong narrow emission lines, and an improved determination of stellar metallicities. (Abridged)Comment: 20 pages, 10 embedded figures. Accepted to ApJS after minor correction
    corecore