5 research outputs found

    Evasion of anti-growth signaling: a key step in tumorigenesis and potential target for treatment and prophylaxis by natural compounds

    Get PDF
    The evasion of anti-growth signaling is an important characteristic of cancer cells. In order to continue to proliferate, cancer cells must somehow uncouple themselves from the many signals that exist to slow down cell growth. Here, we define the anti-growth signaling process, and review several important pathways involved in growth signaling: p53, phosphatase and tensin homolog (PTEN), retinoblastoma protein (Rb), Hippo, growth differentiation factor 15 (GDF15), AT-rich interactive domain 1A (ARID1A), Notch, insulin-like growth factor (IGF), and KrĂĽppel-like factor 5 (KLF5) pathways. Aberrations in these processes in cancer cells involve mutations and thus the suppression of genes that prevent growth, as well as mutation and activation of genes involved in driving cell growth. Using these pathways as examples, we prioritize molecular targets that might be leveraged to promote anti-growth signaling in cancer cells. Interestingly, naturally-occurring phytochemicals found in human diets (either singly or as mixtures) may promote anti-growth signaling, and do so without the potentially adverse effects associated with synthetic chemicals. We review examples of naturally-occurring phytochemicals that may be applied to prevent cancer by antagonizing growth signaling, and propose one phytochemical for each pathway. These are: epigallocatechin-3-gallate (EGCG) for the Rb pathway, luteolin for p53, curcumin for PTEN, porphyrins for Hippo, genistein for GDF15, resveratrol for ARID1A, withaferin A for Notch and diguelin for the IGF1-receptor pathway. The coordination of anti-growth signaling and natural compound studies will provide insight into the future application of these compounds in the clinical setting

    Investigation of Correlation between safety biomarkers in serum, histopathological examination and toxicogenomics

    No full text
    This article addresses the issue of miscorrelation between hepatic injury biomarkers and histopathological findings in the drug development context. Our studies indicate that the use of toxicogenomics can aid in the drug development decision-making process associated with such miscorrelated data. BLZ945 was developed as a Colony-Stimulating Factor 1 Receptor (CSF-1R) inhibitor. Treatment of BLZ945 in rats and monkeys increased serum alanine aminotransferase (ALT) and aspartate transaminase (AST). However, liver hypertrophy was the only histopathological liver finding in rats, and there was no change in the livers of monkeys. Longer treatment of BLZ945 in rats for 6 weeks caused up to 6-fold elevation of ALT, yet hepatocyte necrosis was not detected microscopically. Toxicogenomic profiling of liver samples demonstrated that the genes associated with early response to liver injury, apoptosis/necrosis, inflammation, oxidative stress, and metabolic enzymes were upregulated. Studies are ongoing to evaluate the mechanisms underlying BL945-induced ALT and AST elevation

    Evasion of anti-growth signaling: A key step in tumorigenesis and potential target for treatment and prophylaxis by natural compounds

    No full text
    corecore