63 research outputs found

    Cholestasis and meconium ileus in infants with cystic fibrosis and their clinical outcomes

    Get PDF
    Objective To identify the incidence and outcomes of cholestasis and meconium ileus (MI) in infants with cystic fibrosis (CF). Design Retrospective cohort study. Setting Single-centre study. Patients From January 1986 to December 2011, 401 infants with CF (69 with MI) presented to our centre. Main outcome measurements (1) incidence of cholestasis, (2) identification of risk factors for cholestasis, (3) association between the presence of cholestasis and MI and the development of clinically significant CF-associated liver disease (CFLD) defined as multilobular cirrhosis with portal hypertension. Results Cholestasis occurred in 23 of 401 infants (5.7%). There was a significantly higher incidence of cholestasis in infants with MI (27.1%) compared to those without MI (1.2%) (p Conclusions Cholestasis is an uncommon condition in CF affecting only 5.7% of the screened newborn CF population. The greatest risk factor for developing cholestasis is the presence of MI. However, the presence of MI appears not to be associated with the development of CFLD. An effect of neonatal cholestasis on the development of CFLD cannot be excluded by this study

    The impact of FDA and EMA regulatory decision-making process on the access to CFTR modulators for the treatment of cystic fibrosis

    Get PDF
    Background: Over the past decade, a new class of drugs called CFTR (cystic fibrosis transmembrane conductance regulator) modulators have shown to be able to improve clinical outcomes in patient with Cystic Fibrosis. In this analysis, we have extensively reviewed the regulatory pathways and decisions adopted by FDA and EMA to speed up the development, the review and the approval of these drugs, with the aim of identifying possible clinical and public health implications associated with differences. Results: CFTR modulators have been developed towards addressing three main genetic domains: (1) F508del homozygous (F508del/F508del), (2) F508del heterozygous, and (3) genotypes not carrying F508del mutation; and expanded from adult to paediatric population. Programs to expedite the reviewing and licensing of CFTR modulators were extensively adopted by FDA and EMA. All CFTR modulators have been licensed in the US as orphan drugs, but in the EU the orphan status for LUM/IVA was not confirmed at the time of marketing authorization as results from the pivotal trial were not considered clinically significant. While FDA and EMA approved CFTR modulators on the basis of results from phase III double-blind RCTs, main differences were found on the extension of indications: FDA accepted non-clinical evidence considering a recovery of the CFTR function ≥ 10% based on chloride transport, a reliable indicator to correlate with improvement in clinical outcomes. By contrast, EMA did not deem preclinical data sufficient to expand the label of CFTR modulators without confirmatory clinical data. Conclusions: Regulators played an important role in fostering the development and approval of CFTR modulators. However, differences were found between FDA and EMA in the way of reviewing and licensing CFTR modulators, which extended beyond semantics affecting patients’ eligibility and access: FDA’s approach was more mechanistic/biology-driven while the EMA’s one was more oriented by clinical evidence. This might refer to the connection between the EMA and the Member States, which tends to base decisions on pricing and reimbursement on clinical data rather than pre-clinical ones. Here we have proposed a two-step personalized-based model to merge the ethical commitment of ensuring larger access to all potential eligible patients (including those harboring very rare mutations) with the one of ensuring access to clinically assessed and effective medicines through Real World Data

    Further Insights into the Hematological Disorders Observed in Shwachman-Diamond Syndrome: mTOR and STAT3 Hyper-Phosphorylation in CD4+ and CD8+ T Cells and Efficacy of Rapamycin Treatment

    Get PDF
    Shwachman-Diamond syndrome (SDS) is a rare autosomal recessive disease which affects 1/168,000 newborns in Italy with a mean of 3.0 new cases/year. SDS is caused by mutations in the Shwachman-Bodian-Diamond syndrome (SBDS) gene, which encodes for the homonymous protein SBDS, whose exact function is still unknown. SBDS protein has been reported to play a role in eukaryotic ribosome biogenesis. Thus, SDS is considered a ribosomopathy. The pathology is characterized by multiple-organ impairment involving bone marrow failure, exocrine pancreatic insufficiency, skeletal malformations, hepatic and cognitive disorders. Neutropenia and impaired neutrophil chemotaxis, which in turn cause recurrent infections, are reported in young children. Furthermore, 15-20% of SDS patients develop myelodysplastic syndrome (MDS), with increased risk of acute myeloid leukemia (AML) progression, which represent the main cause of mortality. However, the exact pathologic mechanism whereby loss of SDBS function could lead to the specific SDS hematological issues remains unclear. We recently reported, for the first time to the best of our knowledge, that the mammalian Target of Rapamycin (mTOR) and Signal Transducer and Activator of Transcription (STAT)-3 pathways are hyper-activated in B cells, PMNs and, mostly, in monocytes obtained from SDS patients (Bezzerri V et al, Sci Rep 2016, in press). Since mTOR and STAT3 activation are associated with neutrophil development and AML, this finding could at least partially explain the onset of the hematological issues. Here we show a further Phospho flow analysis of mTOR and STAT3 pathways activation in otherlymphocytes subsets,in particular in CD8+/CD4+ T cells and NK cells obtained from five SDS patients. We found that STAT3 S727 is the most phosphorylated site in CD8+ and CD4+ T cells (more than twice than the healthy control cells, each). Furthermore, mTOR (S2448) is hyper-phosphorylated in CD8+ and CD4+ T cells derived from SDS patients. Median fluorescence intensity shifted from 220 \ub1 25 (healthy controls) to 405 \ub1 29 (SDS patients) in CD8+ T cells and from 350 \ub1 132 (healthy controls) to 590 \ub1 150 (SDS patients) in CD4+ T cells, similarly to results obtained from Monocytes and B cells. NK seems to be less responsive to mTOR/STAT3 activation than B and T cells. Importantly, mTOR inhibitor rapamycin is able to reduce both mTOR and STAT3 activation, with different efficacy, in a cell type-dependent manner. In particular, rapamycin strongly reduces both mTOR and STAT3 S727 phosphorylation in CD8+ and CD4+ T cells. Thus, these results suggest a role of mTOR/STAT3 pathways in both myeloid and lymphoid lineages of SDS blood cells. Since several drugs approved by FDA and EMA targeting the JAK-STAT and mTOR pathways have been currently evaluated for the treatment of different forms of hematological malignancies, this work could open a wider scenario into the current SDS therapeutic approaches

    Normative growth charts for Shwachman-Diamond syndrome from Italian cohort of 0-8 years old

    Get PDF
    Shwachman-Diamond syndrome (SDS) is a rare autosomal recessive disorder. Its predominant manifestations include exocrine pancreatic insufficiency, bone marrow failure and skeletal abnormalities. Patients frequently present failure to thrive and susceptibility to short stature. Average birth weight is at the 25th percentile; by the first birthday, >50% of patients drop below the third percentile for height and weight.The study aims at estimating the growth charts for patients affected by SDS in order to give a reference tool helpful for medical care and growth surveillance through the first 8 years of patient's life

    Glucose tolerance stages in Cystic Fibrosis are idenfied by a unique pattern of defects of Beta-cell function

    Get PDF
    To assess the order of severity of the defects of three direct determinants of glucose regulation, i.e., beta-cell function, insulin clearance and insulin sensitivity, in patients with CF categorized according their glucose tolerance status, including early elevation of mid-OGTT glucose values (>140 and < 200 mg/dL), named AGT140

    Evaluation of energy metabolism and calcium homeostasis in cells affected by Shwachman-Diamond syndrome

    Get PDF
    Isomorphic mutation of the SBDS gene causes Shwachman-Diamond syndrome (SDS). SDS is a rare genetic bone marrow failure and cancer predisposition syndrome. SDS cells have ribosome biogenesis and their protein synthesis altered, which are two high-energy consuming cellular processes. The reported changes in reactive oxygen species production, endoplasmic reticulum stress response and reduced mitochondrial functionality suggest an energy production defect in SDS cells. In our work, we have demonstrated that SDS cells display a Complex IV activity impairment, which causes an oxidative phosphorylation metabolism defect, with a consequent decrease in ATP production. These data were confirmed by an increased glycolytic rate, which compensated for the energetic stress. Moreover, the signalling pathways involved in glycolysis activation also appeared more activated; i.e. we reported AMP-activated protein kinase hyper-phosphorylation. Notably, we also observed an increase in a mammalian target of rapamycin phosphorylation and high intracellular calcium concentration levels ([Ca2+]i), which probably represent new biochemical equilibrium modulation in SDS cells. Finally, the SDS cell response to leucine (Leu) was investigated, suggesting its possible use as a therapeutic adjuvant to be tested in clinical trials

    Enhanced p53 Levels Are Involved in the Reduced Mineralization Capacity of Osteoblasts Derived from Shwachman–Diamond Syndrome Subjects

    Get PDF
    14noopenShwachman–Diamond syndrome (SDS) is a rare autosomal recessive disorder characterized by bone marrow failure, exocrine pancreatic insufficiency, and skeletal abnormalities, caused by loss-of-function mutations in the SBDS gene, a factor involved in ribosome biogenesis. By analyzing osteoblasts from SDS patients (SDS-OBs), we show that SDS-OBs displayed reduced SBDS gene expression and reduced/undetectable SBDS protein compared to osteoblasts from healthy subjects (H-OBs). SDS-OBs cultured in an osteogenic medium displayed a lower mineralization capacity compared to H-OBs. Whole transcriptome analysis showed significant differences in the gene expression of SDS-OBs vs. H-OBs, particularly in the ossification pathway. SDS OBs expressed lower levels of the main genes responsible for osteoblastogenesis. Of all downregulated genes, Western blot analyses confirmed lower levels of alkaline phosphatase and collagen type I in SDS-OBs than in H-OBs. Interestingly, SDS-OBs showed higher protein levels of p53, an inhibitor of osteogenesis, compared to H-OBs. Silencing of Tp53 was associated with higher collagen type I and alkaline phosphatase protein levels and an increase in SDS-OB mineralization capacity. In conclusion, our results show that the reduced capacity of SDS-OBs to mineralize is mediated, at least in part, by the high levels of p53 and highlight an important role of SBDS in osteoblast functions.openFrattini, Annalisa; Bolamperti, Simona; Valli, Roberto; Cipolli, Marco; Pinto, Rita Maria; Bergami, Elena; Frau, Maria Rita; Cesaro, Simone; Signo, Michela; Bezzerri, Valentino; Porta, Giovanni; Khan, Abdul Waheed; Rubinacci, Alessandro; Villa, IsabellaFrattini, Annalisa; Bolamperti, Simona; Valli, Roberto; Cipolli, Marco; Pinto, Rita Maria; Bergami, Elena; Frau, Maria Rita; Cesaro, Simone; Signo, Michela; Bezzerri, Valentino; Porta, Giovanni; Khan, Abdul Waheed; Rubinacci, Alessandro; Villa, Isabell

    SARS-CoV-2 vaccination modelling for safe surgery to save lives : data from an international prospective cohort study

    Get PDF
    Background: Preoperative SARS-CoV-2 vaccination could support safer elective surgery. Vaccine numbers are limited so this study aimed to inform their prioritization by modelling. Methods: The primary outcome was the number needed to vaccinate (NNV) to prevent one COVID-19-related death in 1 year. NNVs were based on postoperative SARS-CoV-2 rates and mortality in an international cohort study (surgical patients), and community SARS-CoV-2 incidence and case fatality data (general population). NNV estimates were stratified by age (18-49, 50-69, 70 or more years) and type of surgery. Best- and worst-case scenarios were used to describe uncertainty. Results: NNVs were more favourable in surgical patients than the general population. The most favourable NNVs were in patients aged 70 years or more needing cancer surgery (351; best case 196, worst case 816) or non-cancer surgery (733; best case 407, worst case 1664). Both exceeded the NNV in the general population (1840; best case 1196, worst case 3066). NNVs for surgical patients remained favourable at a range of SARS-CoV-2 incidence rates in sensitivity analysis modelling. Globally, prioritizing preoperative vaccination of patients needing elective surgery ahead of the general population could prevent an additional 58 687 (best case 115 007, worst case 20 177) COVID-19-related deaths in 1 year. Conclusion: As global roll out of SARS-CoV-2 vaccination proceeds, patients needing elective surgery should be prioritized ahead of the general population.Peer reviewe

    Mutation Screening of Elongation Factor 2 in Shwachman-Diamond Syndrome Patients Lacking Mutations in the SBDS Gene

    No full text
    Shwachman-Diamond syndrome is an autosomal recessive disorder characterized by bone marrow failure, pancreatic insufficiency, and skeletal abnormalities. Mutations in SBDS gene explain, by literature, 90% of SDS cases. The Italian experience shows that only the 5% of individuals diagnosed as affected by SDS on clinical and hematological grounds lack mutations in the SBDS gene. It is well established that SBDS protein is essential for the assembly of mature ribosomes. The yeast SBDS ortholog functions within a pathway containing elongation factor-like 1, homologous to human GTPase elongation factor-2, to promote the release and recycling of the nucleolar shuttling factor Tif6 from cytoplasmic pre-60S subunits in a cascade targeted to form the active ribosome. We considered that mutations of genes that disrupt pathways shared by SBDS may result in disease with comparable clinical features. EEF2 was evaluated as a candidate gene by mutation screening in clinically defined SDS which lack mutations in the SBDS gene. To date, no deleterious mutations were found in EEF2 in four Italian patients without SBDS mutations, but with a clinical diagnosis of SDS

    Is cellular senescence involved in cystic fibrosis?

    No full text
    Abstract Pulmonary disease is the main cause of the morbidity and mortality of patients affected by cystic fibrosis (CF). The lung pathology is dominated by excessive recruitment of neutrophils followed by an exaggerated inflammatory process that has also been reported to occur in the absence of apparent pathogenic infections. Airway surface dehydration and mucus accumulation are the driving forces of this process. The continuous release of reactive oxygen species and proteases by neutrophils contributes to tissue damage, which eventually leads to respiratory insufficiency. CF has been considered a paediatric problem for several decades. Nevertheless, during the last 40 years, therapeutic options for CF have been greatly improved, turning CF into a chronic disease and extending the life expectancy of patients. Unfortunately, chronic inflammatory processes, which are characterized by a substantial release of cytokines and chemokines, along with ROS and proteases, can accelerate cellular senescence, leading to further complications in adulthood. The alterations and mechanisms downstream of CFTR functional defects that can stimulate cellular senescence remain unclear. However, while there are correlative data suggesting that cellular senescence may be implicated in CF, a causal or consequential relationship between cellular senescence and CF is still far from being established. Senescence can be both beneficial and detrimental. Senescence may suppress bacterial infections and cooperate with tissue repair. Additionally, it may act as an effective anticancer mechanism. However, it may also promote a pro-inflammatory environment, thereby damaging tissues and leading to chronic age-related diseases. In this review, we present the most current knowledge on cellular senescence and contextualize its possible involvement in CF
    corecore