7 research outputs found

    Biogenic factors explain soil carbon in paired urban and natural ecosystems worldwide

    Get PDF
    DATA AVAILABILITY : The raw data associated with this study are available in https://figshare.com/s/1eadef6619e74a8f2904 (https://doi.org/10.6084/m9.figshare.21025615).Urban greenspaces support multiple nature-based services, many of which depend on the amount of soil carbon (C). Yet, the environmental drivers of soil C and its sensitivity to warming are still poorly understood globally. Here we use soil samples from 56 paired urban greenspaces and natural ecosystems worldwide and combine soil C concentration and size fractionation measures with metagenomics and warming incubations. We show that surface soils in urban and natural ecosystems sustain similar C concentrations that follow comparable negative relationships with temperature. Plant productivity’s contribution to explaining soil C was higher in natural ecosystems, while in urban ecosystems, the soil microbial biomass had the greatest explanatory power. Moreover, the soil microbiome supported a faster C mineralization rate with experimental warming in urban greenspaces compared with natural ecosystems. Consequently, urban management strategies should consider the soil microbiome to maintain soil C and related ecosystem services.This study was supported by a 2019 Leonardo Grant for Researchers and Cultural Creators, BBVA Foundation (URBANFUN), and by BES Grant. Unión Europea NextGeneration; the Spanish Ministry of Science and Innovation funded by MCIN/AEI/10.13039/501100011033; a project of the Fondo Europeo de Desarrollo Regional (FEDER) and the Consejería de Transformación Económica, Industria, Conocimiento y Universidades of the Junta de Andalucía (FEDER Andalucía 2014-2020 Objetivo temático ‘01 - Refuerzo de la investigación, el desarrollo tecnológico y la innovación’); the Hermon Slade Foundation; the Science and Engineering Research Board (SERB); the Department of Science and Technology (DST), India; Banaras Hindu Univeristy; the FCT; the MCTES, FSE, UE and the CFE research unit financed by FCT/MCTES through national funds (PIDDAC).https://www.nature.com/nclimatehj2024BiochemistryGeneticsMicrobiology and Plant PathologySDG-15:Life on lan

    Unearthing the soil-borne microbiome of land plants

    Get PDF
    DATA AVAILABILITY STATEMENT : Data from this manuscript is available at 10.6084/m9.figshare.25254673.Plant–soil biodiversity interactions are fundamental for the functioning of terrestrial ecosystems. Yet, the existence of a set of globally distributed topsoil microbial and small invertebrate organisms consistently associated with land plants (i.e., their consistent soil-borne microbiome), together with the environmental preferences and functional capabilities of these organisms, remains unknown. We conducted a standardized field survey under 150 species of land plants, including 58 species of bryophytes and 92 of vascular plants, across 124 locations from all continents. We found that, despite the immense biodiversity of soil organisms, the land plants evaluated only shared a small fraction (less than 1%) of all microbial and invertebrate taxa that were present across contrasting climatic and soil conditions and vegetation types. These consistent taxa were dominated by generalist decomposers and phagotrophs and their presence was positively correlated with the abundance of functional genes linked to mineralization. Finally, we showed that crossing environmental thresholds in aridity (aridity index of 0.65, i.e., the transition from mesic to dry ecosystems), soil pH (5.5; i.e., the transition from acidic to strongly acidic soils), and carbon (less than 2%, the lower limit of fertile soils) can result in drastic disruptions in the associations between land plants and soil organisms, with potential implications for the delivery of soil ecosystem processes under ongoing global environmental change.British Ecological Society; Slovenian Research Agency; Junta de Andalucía; Spanish Ministry of Science and Innovation.http://www.wileyonlinelibrary.com/journal/gcbhj2024BiochemistryGeneticsMicrobiology and Plant PathologySDG-15:Life on lan

    The global contribution of soil mosses to ecosystem services

    Get PDF
    DATA AVAILABILITY : All the materials, raw data, and protocols used in the article are available upon request. Data used in this study can be found in the Figshare data repository https://figshare.com/s/b152d06e53066d08b934 ref.Soil mosses are among the most widely distributed organisms on land. Experiments and observations suggest that they contribute to terrestrial soil biodiversity and function, yet their ecological contribution to soil has never been assessed globally under natural conditions. Here we conducted the most comprehensive global standardized field study to quantify how soil mosses influence 8 ecosystem services associated with 24 soil biodiversity and functional attributes across wide environmental gradients from all continents. We found that soil mosses are associated with greater carbon sequestration, pool sizes for key nutrients and organic matter decomposition rates but a lower proportion of soil-borne plant pathogens than unvegetated soils. Mosses are especially important for supporting multiple ecosystem services where vascular-plant cover is low. Globally, soil mosses potentially support 6.43 Gt more carbon in the soil layer than do bare soils. The amount of soil carbon associated with mosses is up to six times the annual global carbon emissions from any altered land use globally. The largest positive contribution of mosses to soils occurs under perennial, mat and turf mosses, in less-productive ecosystems and on sandy soils. Our results highlight the contribution of mosses to soil life and functions and the need to conserve these important organisms to support healthy soils.A Large Research Grant from the British Ecological Society; the Hermon Slade Foundation; a Ramón y Cajal grant from the Spanish Ministry of Science and Innovation; the Junta de Andalucía; the European Research Council; the AEI; the Program for Introducing Talents to Universities; the Ministry of Education Innovation Team Development Plan; the Research Program in Forest Biology, Ecology and Technology; the Slovenian Research Agency; the NSF Biological Integration Institutes; the FCT and FCT/MCTES through national funds (PIDDAC).http://www.nature.com/ngeo/hj2024BiochemistryGeneticsMicrobiology and Plant PathologySDG-15:Life on lan

    Prediction of second neurological attack in patients with clinically isolated syndrome using support vector machines

    Get PDF
    The aim of this study is to predict the conversion from clinically isolated syndrome to clinically definite multiple sclerosis using support vector machines. The two groups of converters and non-converters are classified using features that were calculated from baseline data of 73 patients. The data consists of standard magnetic resonance images, binary lesion masks, and clinical and demographic information. 15 features were calculated and all combinations of them were iteratively tested for their predictive capacity using polynomial kernels and radial basis functions with leave-one-out cross-validation. The accuracy of this prediction is up to 86.4% with a sensitivity and specificity in the same range indicating that this is a feasible approach for the prediction of a second clinical attack in patients with clinically isolated syndromes, and that the chosen features are appropriate. The two features gender and location of onset lesions have been used in all feature combinations leading to a high accuracy suggesting that they are highly predictive. However, it is necessary to add supporting features to maximise the accuracy. © 2013 IEEE

    Ring-20-syndrome and loss of telomeric regions

    No full text
    A patient aged 10 years and 8 months with a ring-20-syndrome was studied. Clinically he presented normal psychomotor development until 25 months of age when he began with right simple partial motor seizures. He presented minimal dysmorphism, generalized tonic-clonic seizures refractory to medical therapy and behavioral troubles. He was submitted to a callosotomy when he presented an electric status, subsequently, he was treated with anticonvulsivants and felbamate and the seizures were controlled. The karyotype showed a chromosomal complement 46,XY,r(20)(p13q13.3) with loss of the telomeric regions evidenced by FISH. The mother had normal karyotype. The clinical and cytogenetic features of previous cases described in the literature were compared leading to a better characterization of this syndrome. 2000 Editions scientifiques et medicales Elsevier SAS
    corecore