145 research outputs found
Adsorption of Line Segments on a Square Lattice
We study the deposition of line segments on a two-dimensional square lattice.
The estimates for the coverage at jamming obtained by Monte-Carlo simulations
and by -order time-series expansion are successfully compared. The
non-trivial limit of adsorption of infinitely long segments is studied, and the
lattice coverage is consistently obtained using these two approaches.Comment: 19 pages in Latex+5 postscript files sent upon request ; PTB93_
Effects of Bt-cotton on biological properties of Vertisols in central India
Growing areas under transgenic crops have created a concern over their possible adverse impact on the soil ecosystem. This study evaluated the effect of Bt-cotton based cropping systems on soil microbial and biochemical activities and their functional relationships with active soil carbon pools in Vertisols of central India (Nagpur, Maharastra, during 2012â2013). Culturable groups of soil microflora, enzymatic activities and active pools of soil carbon were measured under different Bt-cotton based cropping systems (e.g. cotton-soybean, cotton-redgram, cotton-wheat, cotton-vegetables and cotton-fallow). Significantly higher counts of soil heterotrophs (5.7â7.9 log cfu gâ1soil), aerobic N-fixer (3.9â5.4 log cfu gâ1soil) and P-solubilizer (2.5â3.0 log cfu gâ1soil) were recorded in Bt-cotton soils. Similarly, soil enzymatic activities, viz. dehydrogenase (16.6â22.67Â Âľg TPF gâ1Â hâ1), alkaline phosphatase (240â253Â Âľg PNP gâ1Â hâ1) and fluorescein di-acetate hydrolysis (14.6â18.0Â Âľg fluorescein gâ1Â hâ1), were significantly higher under Bt-cotton-soybean system than other Bt- and non-Bt-cotton based systems in all crop growth stages. The growth stage-wise order of soil microbiological activities were: boll development >Â harvest >Â vegetative stage. Significant correlations were observed between microbiological activities and active carbon pools in the rhizosphere soil. The findings indicated no adverse effect of Bt-cotton on soil biological properties
Tight-binding g-Factor Calculations of CdSe Nanostructures
The Lande g-factors for CdSe quantum dots and rods are investigated within
the framework of the semiempirical tight-binding method. We describe methods
for treating both the n-doped and neutral nanostructures, and then apply these
to a selection of nanocrystals of variable size and shape, focusing on
approximately spherical dots and rods of differing aspect ratio. For the
negatively charged n-doped systems, we observe that the g-factors for
near-spherical CdSe dots are approximately independent of size, but show strong
shape dependence as one axis of the quantum dot is extended to form rod-like
structures. In particular, there is a discontinuity in the magnitude of
g-factor and a transition from anisotropic to isotropic g-factor tensor at
aspect ratio ~1.3. For the neutral systems, we analyze the electron g-factor of
both the conduction and valence band electrons. We find that the behavior of
the electron g-factor in the neutral nanocrystals is generally similar to that
in the n-doped case, showing the same strong shape dependence and discontinuity
in magnitude and anisotropy. In smaller systems the g-factor value is dependent
on the details of the surface model. Comparison with recent measurements of
g-factors for CdSe nanocrystals suggests that the shape dependent transition
may be responsible for the observations of anomalous numbers of g-factors at
certain nanocrystal sizes.Comment: 15 pages, 6 figures. Fixed typos to match published versio
Impact of genetically modified crops on rhizosphere microorganisms and processes:A review focusing on Bt cotton
In recent years, the cultivation of genetically modified (GM) crops has become a topic of great interest, due in part to the considerable public controversy, which exists concerning their potential benefits or adverse effects. Since the development of the first GM crop about 25 years ago, a diverse range of new cultivars have been released into the environment which were developed by employing advanced molecular techniques to introduce new beneficial genes from a wide variety of sources. While GM crops have great potential for enhancing agricultural production, their potential impacts on soil biota are only partially understood and information on their long-term impact on soil biota is scant. Several recent studies have indicated that GM crops may cause changes in both the invertebrate and microorganism soil biota associated with these crops, with some laboratory-based experiments even revealing transfer of genes from GM plants to native soil bacteria. However, processes such as gene transfer and stable inheritance to subsequent generations remain unproven in natural soil systems. In addition, although significant research efforts have recently been directed towards understanding the effects of GM crops on soil biota, the wide variation in the scientific observations has often hindered an accurate understanding of the issues. Thus, this review collated and synthesized all available information on the microbiological and biochemical effects of GM crops on soil biota with a special focus on GM Bt-cotton. The review also addressed the key issues associated with the use of GM crops including herbicide resistance, transgene flow and explored the plausibility of horizontal gene transfer in soil
Synchronous counting and computational algorithm design
Consider a complete communication network on n nodes, each of which is a state machine with s states. In synchronous 2-counting, the nodes receive a common clock pulse and they have to agree on which pulses are âoddâ and which are âevenâ. We require that the solution is self-stabilising (reaching the correct operation from any initial state) and it tolerates f Byzantine failures (nodes that send arbitrary misinformation). Prior algorithms are expensive to implement in hardware: they require a source of random bits or a large number of states s. We use computational techniques to construct very compact deterministic algorithms for the first non-trivial case of f = 1. While no algorithm exists for n < 4, we show that as few as 3 states are sufficient for all values n ⼠4. We prove that the problem cannot be solved with only 2 states for n = 4, but there is a 2-state solution for all values n ⼠6.Peer reviewe
Hypothermic Oxygenated New Machine Perfusion System in Liver and Kidney Transplantation of Extended Criteria Donors:First Italian Clinical Trial
With the aim to explore innovative tools for organ preservation, especially in marginal organs, we hereby describe a clinical trial of ex-vivo hypothermic oxygenated perfusion (HOPE) in the field of liver (LT) and kidney transplantation (KT) from Extended Criteria Donors (ECD) after brain death. A matched-case analysis of donor and recipient variables was developed: 10 HOPE-ECD livers and kidneys (HOPE-L and HOPE-K) were matched 1:3 with livers and kidneys preserved with static cold storage (SCS-L and SCS-K). HOPE and SCS groups resulted with similar basal characteristics, both for recipients and donors. Cumulative liver and kidney graft dysfunction were 10% (HOPE L-K) vs. 31.7%, in SCS group (p = 0.05). Primary non-function was 3.3% for SCS-L vs. 0% for HOPE-L. No primary non-function was reported in HOPE-K and SCS-K. Median peak aspartate aminotransferase within 7-days post-LT was significantly higher in SCS-L when compared to HOPE-L (637 vs.344 U/L, p = 0.007). Graft survival at 1-year post-transplant was 93.3% for SCS-L vs. 100% of HOPE-L and 90% for SCS-K vs. 100% of HOPE-K. Clinical outcomes support our hypothesis of machine perfusion being a safe and effective system to reduce ischemic preservation injuries in KT and in LT
Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV
A search for a Higgs boson decaying into two photons is described. The
analysis is performed using a dataset recorded by the CMS experiment at the LHC
from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an
integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross
section of the standard model Higgs boson decaying to two photons. The expected
exclusion limit at 95% confidence level is between 1.4 and 2.4 times the
standard model cross section in the mass range between 110 and 150 GeV. The
analysis of the data excludes, at 95% confidence level, the standard model
Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The
largest excess of events above the expected standard model background is
observed for a Higgs boson mass hypothesis of 124 GeV with a local significance
of 3.1 sigma. The global significance of observing an excess with a local
significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is
estimated to be 1.8 sigma. More data are required to ascertain the origin of
this excess.Comment: Submitted to Physics Letters
Measurement of isolated photon production in pp and PbPb collisions at sqrt(sNN) = 2.76 TeV
Isolated photon production is measured in proton-proton and lead-lead
collisions at nucleon-nucleon centre-of-mass energies of 2.76 TeV in the
pseudorapidity range |eta|<1.44 and transverse energies ET between 20 and 80
GeV with the CMS detector at the LHC. The measured ET spectra are found to be
in good agreement with next-to-leading-order perturbative QCD predictions. The
ratio of PbPb to pp isolated photon ET-differential yields, scaled by the
number of incoherent nucleon-nucleon collisions, is consistent with unity for
all PbPb reaction centralities.Comment: Submitted to Physics Letters
Commissioning and performance of the CMS pixel tracker with cosmic ray muons
This is the Pre-print version of the Article. The official published verion of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe pixel detector of the Compact Muon Solenoid experiment consists of three barrel layers and two disks for each endcap. The detector was installed in summer 2008, commissioned with charge injections, and operated in the 3.8 T magnetic field during cosmic ray data taking. This paper reports on the first running experience and presents results on the pixel tracker performance, which are found to be in line with the design specifications of this detector. The transverse impact parameter resolution measured in a sample of high momentum muons is 18 microns.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ,
and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia);
Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG,
and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT,
SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)
Alignment of the CMS silicon tracker during commissioning with cosmic rays
This is the Pre-print version of the Article. The official published version of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe CMS silicon tracker, consisting of 1440 silicon pixel and 15 148 silicon strip detector modules, has been aligned using more than three million cosmic ray charged particles, with additional information from optical surveys. The positions of the modules were determined with respect to cosmic ray trajectories to an average precision of 3â4 microns RMS in the barrel and 3â14 microns RMS in the endcap in the most sensitive coordinate. The results have been validated by several studies, including laser beam cross-checks, track fit self-consistency, track residuals in overlapping module regions, and track parameter resolution, and are compared with predictions obtained from simulation. Correlated systematic effects have been investigated. The track parameter resolutions obtained with this alignment are close to the design performance.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ,
and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS
(Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia);
Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG,
and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT,
SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)
- âŚ