44 research outputs found

    Measurement of the cross-section for producing a W boson in association with a single top quark in pp collisions at √s = 13 TeV with ATLAS

    Get PDF
    The inclusive cross-section for the associated production of a W boson and top quark is measured using data from proton-proton collisions at √ s = 13 TeV. The dataset corresponds to an integrated luminosity of 3.2 fb−1 , and was collected in 2015 by the ATLAS detector at the Large Hadron Collider at CERN. Events are selected requiring two opposite sign isolated leptons and at least one jet; they are separated into signal and control regions based on their jet multiplicity and the number of jets that are identified as containing b hadrons. The W t signal is then separated from the tt¯ background using boosted decision tree discriminants in two regions. The cross-section is extracted by fitting templates to the data distributions, and is measured to be σW t = 94±10 (stat.) +28 −22 (syst.)±2 (lumi.) pb. The measured value is in good agreement with the SM prediction of σtheory = 71.7±1.8 (scale)± 3.4 (PDF) pb [1]

    Monitoring and data quality assessment of the ATLAS liquid argon calorimeter

    Get PDF
    The liquid argon calorimeter is a key component of the ATLAS detector installed at the CERN Large Hadron Collider. The primary purpose of this calorimeter is the measurement of electron and photon kinematic properties. It also provides a crucial input for measuring jets and missing transverse momentum. An advanced data monitoring procedure was designed to quickly identify issues that would affect detector performance and ensure that only the best quality data are used for physics analysis. This article presents the validation procedure developed during the 2011 and 2012 LHC data-taking periods, in which more than 98% of the proton-proton luminosity recorded by ATLAS at a centre-of-mass energy of 7-8 TeV had calorimeter data quality suitable for physics analysis

    Measurement of the inclusive cross-section for the production of jets in association with a Z boson in proton-proton collisions at 8 TeV using the ATLAS detector

    Get PDF
    The inclusive cross-section for jet production in association with a Z boson decaying into an electron–positron pair is measured as a function of the transverse momentum and the absolute rapidity of jets using 19.9 fb −1 of s√=8 TeV proton–proton collision data collected with the ATLAS detector at the Large Hadron Collider. The measured Z + jets cross-section is unfolded to the particle level. The cross-section is compared with state-of-the-art Standard Model calculations, including the next-to-leading-order and next-to-next-to-leading-order perturbative QCD calculations, corrected for non-perturbative and QED radiation effects. The results of the measurements cover final-state jets with transverse momenta up to 1 TeV, and show good agreement with fixed-order calculations

    Not Available

    No full text
    Not AvailableThe most important evolutionary event in the success of commercial tea cultivation outside China in ~30 countries came about by the origin of India hybrid tea in India, derived from the extensive spontaneous hybridization that took place between the Assam type tea growing in the forest regions of Assam, North-East India and China type tea introduced from China in ~1875 to many regions of North-East India. The release of an enormous pool of vigorous and highly variable plants of India hybrid tea in North-East India was a significant step forward for the origin and evolution of tea as a highly successful crop plant. The 1,644 accessions and clones of India hybrid tea, representatives of known 15 morphotypes, were screened by 412 AFLP markers amplified by 7 AFLP primer pair combinations. All the 412 genetic loci were polymorphic across the 1,644 accessions and clones. The analysis was done with distance (PCoA and NJ) methods, and the STRUCTURE (Bayesian) model. Both PCoA and NJ analysis clustered 1,644 tea accessions and clones into six major groups with one group in each, constituted mostly by China hybrid, Assam China hybrid and Assam hybrid morphotypes, of distinct genetic identity. No group was exclusive for any particular morphotype. The accessions and clones belonging to morphotypes, Assam type, Assam hybrid, China hybrid and China Cambod were distributed in all the groups. It is the Assam type/Assam hybrid morphotypes which exhibit much broader genetic variability than in China type/China hybrid/Cambod type/Cambod hybrid morphotypes. The STRUCTURE analysis inferred 16 populations (K = 16), for which the greatest values of probability were obtained. Nine of the 16 clusters were constituted by the tea accessions and clones of ‘pure’ ancestry. The remaining clusters were of ‘mixed’ ancestry. This analysis provides evidence that the accessions and clones of the same morphotype are not always of same genetic ancestry structure. The tea accessions and clones obtained from outside North-East India shared the same groups (distance method) and clusters (STRUCTURE model) which were constituted by North-East India accessions. The present study also demonstrates very narrow genetic diversity in the commercial tea clones vis-à-vis the profound genetic diversity existing in the tea accessions. These clones were distributed in hardly two of the six groups in NJ tree. The identified 105 core accessions and clones, capturing 98% diversity, have their origin from almost all groups/subgroups of NJ treeNot Availabl
    corecore