5 research outputs found

    Platelet-Activating Factor Receptor Plays a Role in Lung Injury and Death Caused by Influenza A in Mice

    Get PDF
    Influenza A virus causes annual epidemics which affect millions of people worldwide. A recent Influenza pandemic brought new awareness over the health impact of the disease. It is thought that a severe inflammatory response against the virus contributes to disease severity and death. Therefore, modulating the effects of inflammatory mediators may represent a new therapy against Influenza infection. Platelet activating factor (PAF) receptor (PAFR) deficient mice were used to evaluate the role of the gene in a model of experimental infection with Influenza A/WSN/33 H1N1 or a reassortant Influenza A H3N1 subtype. The following parameters were evaluated: lethality, cell recruitment to the airways, lung pathology, viral titers and cytokine levels in lungs. The PAFR antagonist PCA4248 was also used after the onset of flu symptoms. Absence or antagonism of PAFR caused significant protection against flu-associated lethality and lung injury. Protection was correlated with decreased neutrophil recruitment, lung edema, vascular permeability and injury. There was no increase of viral load and greater recruitment of NK1.1+ cells. Antibody responses were similar in WT and PAFR-deficient mice and animals were protected from re-infection. Influenza infection induces the enzyme that synthesizes PAF, lyso-PAF acetyltransferase, an effect linked to activation of TLR7/8. Therefore, it is suggested that PAFR is a disease-associated gene and plays an important role in driving neutrophil influx and lung damage after infection of mice with two subtypes of Influenza A. Further studies should investigate whether targeting PAFR may be useful to reduce lung pathology associated with Influenza A virus infection in humans

    Measurement of the inclusive cross-section for the production of jets in association with a Z boson in proton-proton collisions at 8 TeV using the ATLAS detector

    Get PDF
    The inclusive cross-section for jet production in association with a Z boson decaying into an electron–positron pair is measured as a function of the transverse momentum and the absolute rapidity of jets using 19.9 fb −1 of s√=8 TeV proton–proton collision data collected with the ATLAS detector at the Large Hadron Collider. The measured Z + jets cross-section is unfolded to the particle level. The cross-section is compared with state-of-the-art Standard Model calculations, including the next-to-leading-order and next-to-next-to-leading-order perturbative QCD calculations, corrected for non-perturbative and QED radiation effects. The results of the measurements cover final-state jets with transverse momenta up to 1 TeV, and show good agreement with fixed-order calculations

    Resolution of the ATLAS muon spectrometer monitored drift tubes in LHC Run 2

    Get PDF
    The momentum measurement capability of the ATLAS muon spectrometer relies fundamentally on the intrinsic single-hit spatial resolution of the monitored drift tube precision tracking chambers. Optimal resolution is achieved with a dedicated calibration program that addresses the specific operating conditions of the 354 000 high-pressure drift tubes in the spectrometer. The calibrations consist of a set of timing offsets and drift time to drift distance transfer relations, and result in chamber resolution functions. This paper describes novel algorithms to obtain precision calibrations from data collected by ATLAS in LHC Run 2 and from a gas monitoring chamber, deployed in a dedicated gas facility. The algorithm output consists of a pair of correction constants per chamber which are applied to baseline calibrations, and determined to be valid for the entire ATLAS Run 2. The final single-hit spatial resolution, averaged over 1172 monitored drift tube chambers, is 81.7 ± 2.2 μm

    Measurement of distributions sensitive to the underlying event in inclusive Z boson production in pp collisions at root s=13 TeV with the ATLAS detector

    No full text
    corecore