313 research outputs found
Estimation and optimal designing under latent variable models for paired comparisons studies via a multiplicative algorithm
We consider:<BR/>
1. The problem of estimating the parameters of latent variable models such as the Bradley Terry or Thurstone Model by the method of maximum likelihood, given data from a paired comparisons experiment. The parameters of these models can be taken to be weights which are positive and sum to one;<BR/>
2. The problem of determining approximate locally optimal designs for good estimation of these parameters; i.e of determining optimal design weights which are also positive and sum to one
Hydrogels in the clinic
Injectable hydrogels are one of the most widely investigated and versatile technologies for drug delivery and tissue engineering applications. Hydrogels’ versatility arises from their tunable structure, which has been enabled by considerable advances in fields such as materials engineering, polymer science, and chemistry. Advances in these fields continue to lead to invention of new polymers, new approaches to crosslink polymers, new strategies to fabricate hydrogels, and new applications arising from hydrogels for improving healthcare. Various hydrogel technologies have received regulatory approval for healthcare applications ranging from cancer treatment to aesthetic corrections to spinal fusion. Beyond these applications, hydrogels are being studied in clinical settings for tissue regeneration, incontinence, and other applications. Here, we analyze the current clinical landscape of injectable hydrogel technologies, including hydrogels that have been clinically approved or are currently being investigated in clinical settings. We summarize our analysis to highlight key clinical areas that hydrogels have found sustained success in and further discuss challenges that may limit their future clinical translation
D-optimal designs via a cocktail algorithm
A fast new algorithm is proposed for numerical computation of (approximate)
D-optimal designs. This "cocktail algorithm" extends the well-known vertex
direction method (VDM; Fedorov 1972) and the multiplicative algorithm (Silvey,
Titterington and Torsney, 1978), and shares their simplicity and monotonic
convergence properties. Numerical examples show that the cocktail algorithm can
lead to dramatically improved speed, sometimes by orders of magnitude, relative
to either the multiplicative algorithm or the vertex exchange method (a variant
of VDM). Key to the improved speed is a new nearest neighbor exchange strategy,
which acts locally and complements the global effect of the multiplicative
algorithm. Possible extensions to related problems such as nonparametric
maximum likelihood estimation are mentioned.Comment: A number of changes after accounting for the referees' comments
including new examples in Section 4 and more detailed explanations throughou
Phonon anomalies and electron-phonon interaction in RuSr_2GdCu_2O_8 ferromagnetic superconductor: Evidence from infrared conductivity
Critical behavior of the infrared reflectivity of RuSr_2GdCu_2O_8 ceramics is
observed near the superconducting T_{SC} = 45 K and magnetic T_M = 133 K
transition temperatures. The optical conductivity reveals the typical features
of the c-axis optical conductivity of strongly underdoped multilayer
superconducting cuprates. The transformation of the Cu-O bending mode at 288
cm^{-1} to a broad absorption peak at the temperatures between T^* = 90 K and
T_{SC} is clearly observed, and is accompanied by the suppression of spectral
weight at low frequencies. The correlated shifts to lower frequencies of the
Ru-related phonon mode at 190 cm^{-1} and the mid-IR band at 4800 cm^{-1} on
decreasing temperature below T_M are observed. It provides experimental
evidence in favor of strong electron-phonon coupling of the charge carriers in
the Ru-O layers which critically depends on the Ru core spin alignment. The
underdoped character of the superconductor is explained by strong hole
depletion of the CuO_2 planes caused by the charge carrier self-trapping at the
Ru moments.Comment: 11 pages incl. 5 figures, submitted to PR
Impurity-induced transition and impurity-enhanced thermopower in the thermoelectric oxide NaCo_{2-x}Cu_x$O_4
Various physical quantities are measured and analysed for the Cu-substituted
thermoelectric oxide NaCo_{2-x}Cu_xO_4. As was previously known, the
substituted Cu enhances the thermoelectric power, while it does not increase
the resistivity significantly. The susceptibility and the electron
specific-heat are substantially decreased with increasing x, which implies that
the substituted Cu decreases the effective-mass enhancement. Through a
quantitative comparison with the heavy fermion compounds and the valence
fluctuation systems, we have found that the Cu substitution effectively
increases the coupling between the conduction electron and the magnetic
fluctuation. The Cu substitution induces a phase transition at 22 K that is
very similar to a spin-density-wave transition.Comment: 8 pages, 7 figures, submitted to Phys. Rev.
Evaluating the Performance of Fabrics for Sportswear
This book describes the differences between woven and knitted structures, provides an understanding of fabric behavior and the characteristics of a functional garment, and outlines the importance of garment fit and consumer perception of ..
Formulation and in vitro evaluation of mucoadhesive controlled release matrix tablets of flurbiprofen using response surface methodology
The objective of the current study was to formulate mucoadhesive controlled release matrix tablets of flurbiprofen and to optimize its drug release profile and bioadhesion using response surface methodology. Tablets were prepared via a direct compression technique and evaluated for in vitro dissolution parameters and bioadhesive strength. A central composite design for two factors at five levels each was employed for the study. Carbopol 934 and sodium carboxymethylcellulose were taken as independent variables. Fourier transform infrared (FTIR) spectroscopy studies were performed to observe the stability of the drug during direct compression and to check for a drug-polymer interaction. Various kinetic models were applied to evaluate drug release from the polymers. Contour and response surface plots were also drawn to portray the relationship between the independent and response variables. Mucoadhesive tablets of flurbiprofen exhibited non-Fickian drug release kinetics extending towards zero-order, with some formulations (F3, F8, and F9) reaching super case II transport, as the value of the release rate exponent (n) varied between 0.584 and 1.104. Polynomial mathematical models, generated for various response variables, were found to be statistically significant (P<0.05). The study also helped to find the drug's optimum formulation with excellent bioadhesive strength. Suitable combinations of two polymers provided adequate release profile, while carbopol 934 produced more bioadhesion
- …