1,043 research outputs found

    Site-specific Protein Photochemical Covalent Attachment to Carbon Nanotube Side Walls and its Electronic Impact on Single Molecule Function

    Get PDF
    This is the author accepted manuscript. The final version is available from the American Chemical Society via the DOI in this recordFunctional integration of proteins with carbon-based nanomaterials such as nanotubes holds great promise in emerging electronic and optoelectronic applications. Control over protein attachment poses a major challenge for consistent and useful device fabrication, especially when utilizing single/few molecule properties. Here, we exploit genetically encoded phenyl azide photochemistry to define the direct covalent attachment of four different proteins, including the fluorescent protein GFP and a -lactamase binding protein (BBP), to carbon nanotube side walls. AFM showed that on attachment BBP could still recognize and bind additional protein components. Single molecule fluorescence revealed that on attachment to SWCNTs function was retained and there was feedback to GFP in terms of fluorescence intensity and improved resistance to photobleaching; GFP is fluorescent for much longer on attachment. The site of attachment proved important in terms of electronic impact on GFP function, with the attachment site furthest from the chromophore having the larger effect on fluorescence. Our approach provides a versatile and general method for generating intimate protein-CNT hybrid bioconjugates. It can be potentially applied easily to any protein of choice; attachment position and thus interface characteristics with the CNT can easily be changed by simply placing the phenyl azide chemistry at different residues by gene mutagenesis. Thus, our approach will allow consistent construction and modulate functional coupling through changing the protein attachment position.Biotechnology and Biological Sciences Research Council (BBSRC)Engineering and Physical Sciences Research Council (EPSRC)Cardiff Synthetic Biology InitiativeSynbiCITEWellcome Trus

    The Hubbard model within the equations of motion approach

    Full text link
    The Hubbard model has a special role in Condensed Matter Theory as it is considered as the simplest Hamiltonian model one can write in order to describe anomalous physical properties of some class of real materials. Unfortunately, this model is not exactly solved except for some limits and therefore one should resort to analytical methods, like the Equations of Motion Approach, or to numerical techniques in order to attain a description of its relevant features in the whole range of physical parameters (interaction, filling and temperature). In this manuscript, the Composite Operator Method, which exploits the above mentioned analytical technique, is presented and systematically applied in order to get information about the behavior of all relevant properties of the model (local, thermodynamic, single- and two- particle ones) in comparison with many other analytical techniques, the above cited known limits and numerical simulations. Within this approach, the Hubbard model is shown to be also capable to describe some anomalous behaviors of the cuprate superconductors.Comment: 232 pages, more than 300 figures, more than 500 reference

    Will Patients Benefit from Regionalization of Gynecologic Cancer Care?

    Get PDF
    OBJECTIVE: Patient chances for cure and palliation for a variety of malignancies may be greatly affected by the care provided by a treating hospital. We sought to determine the effect of volume and teaching status on patient outcomes for five gynecologic malignancies: endometrial, cervical, ovarian and vulvar carcinoma and uterine sarcoma. METHODS: The Florida Cancer Data System dataset was queried for all patients undergoing treatment for gynecologic cancers from 1990-2000. RESULTS: Overall, 48,981 patients with gynecologic malignancies were identified. Endometrial tumors were the most common, representing 43.2% of the entire cohort, followed by ovarian cancer (30.9%), cervical cancer (20.8%), vulvar cancer (4.6%), and uterine sarcoma (0.5%). By univariate analysis, although patients treated at high volume centers (HVC) were significantly younger, they benefited from an improved short-term (30-day and/or 90-day) survival for cervical, ovarian and endometrial cancers. Multivariate analysis (MVA), however, failed to demonstrate significant survival benefit for gynecologic cancer patients treated at teaching facilities (TF) or HVC. Significant prognostic factors at presentation by MVA were age over 65 (HR = 2.6, p<0.01), African-American race (HR = 1.36, p<0.01), and advanced stage (regional HR = 2.08, p<0.01; advanced HR = 3.82, p<0.01, respectively). Surgery and use of chemotherapy were each significantly associated with improved survival. CONCLUSION: No difference in patient survival was observed for any gynecologic malignancy based upon treating hospital teaching or volume status. Although instances of improved outcomes may occur, overall further regionalization would not appear to significantly improve patient survival

    Salvage radiotherapy for patients with PSA relapse after radical prostatectomy: a single institution experience

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To assess the efficacy of salvage radiotherapy (RT) for persistent or rising PSA after radical prostatectomy and to determine prognostic factors identifying patients who may benefit from salvage RT.</p> <p>Methods</p> <p>Between 1990 and 2003, 59 patients underwent RT for PSA recurrence after radical prostatectomy. Patients received a median of 66 Gy to the prostate bed with 3D or 2D RT. The main end point was biochemical failure after salvage RT, defined as an increase of the serum PSA value >0.2 ng/ml confirmed by a second elevation.</p> <p>Results</p> <p>Median follow-up was 38 months. The 3-year and 5-year bDFS rates were 56.1% and 41.2% respectively. According to multivariate analysis, only preRT PSA ≥1 ng/ml was associated with biochemical relapse.</p> <p>Conclusion</p> <p>When delivered early, RT is an effective treatment after radical prostatectomy. Only preRT PSA ≥1 ng/ml predicted relapse.</p

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Green Crab (Carcinus maenas) Foraging Efficiency Reduced by Fast Flows

    Get PDF
    Predators can strongly influence prey populations and the structure and function of ecosystems, but these effects can be modified by environmental stress. For example, fluid velocity and turbulence can alter the impact of predators by limiting their environmental range and altering their foraging ability. We investigated how hydrodynamics affected the foraging behavior of the green crab (Carcinus maenas), which is invading marine habitats throughout the world. High flow velocities are known to reduce green crab predation rates and our study sought to identify the mechanisms by which flow affects green crabs. We performed a series of experiments with green crabs to determine: 1) if their ability to find prey was altered by flow in the field, 2) how flow velocity influenced their foraging efficiency, and 3) how flow velocity affected their handling time of prey. In a field study, we caught significantly fewer crabs in baited traps at sites with fast versus slow flows even though crabs were more abundant in high flow areas. This finding suggests that higher velocity flows impair the ability of green crabs to locate prey. In laboratory flume assays, green crabs foraged less efficiently when flow velocity was increased. Moreover, green crabs required significantly more time to consume prey in high velocity flows. Our data indicate that flow can impose significant chemosensory and physical constraints on green crabs. Hence, hydrodynamics may strongly influence the role that green crabs and other predators play in rocky intertidal communities

    Novel role for the transient receptor potential channel TRPM2 in prostate cancer cell proliferation

    Get PDF
    We have identified a novel function for a member of the transient receptor potential (TRP) protein super-family, TRPM2, in prostate cancer cell proliferation. TRPM2 encodes a non-selective cation-permeable ion channel. We found that selectively knocking down TRPM2 with the small interfering RNA technique inhibited the growth of prostate cancer cells but not of non-cancerous cells. The subcellular localization of this protein is also remarkably different between cancerous and non-cancerous cells. In BPH-1 (benign), TRPM2 protein is homogenously located near the plasma membrane and in the cytoplasm, whereas in the cancerous cells (PC-3 and DU-145), a significant amount of the TRPM2 protein is located in the nuclei in a clustered pattern. Furthermore, we have found that TRPM2 inhibited nuclear ADP-ribosylation in prostate cancer cells. However, TRPM2 knockdown-induced inhibition of proliferation is independent of the activity of poly(ADP-ribose) polymerases. We conclude that TRPM2 is essential for prostate cancer cell proliferation and may be a potential target for the selective treatment of prostate cancer
    corecore