189 research outputs found

    Measuring High Energy Neutrino-Nucleon Cross Sections With Future Neutrino Telescopes

    Get PDF
    Next generation kilometer-scale neutrino telescopes, such as ICECUBE, can test standard model predictions for neutrino-nucleon cross sections at energies well beyond the reach of collider experiments. At energies near a PeV and higher, the Earth becomes opaque to neutrinos. At these energies, the ratio of upgoing and downgoing events can be used to measure the total neutrino-nucleon cross section given the presence of an adequate high energy neutrino flux.Comment: 4 pages, 5 figure

    Cosmic Neutrinos and the Energy Budget of Galactic and Extragalactic Cosmic Rays

    Get PDF
    Although kilometer-scale neutrino detectors such as IceCube are discovery instruments, their conceptual design is very much anchored to the observational fact that Nature produces protons and photons with energies in excess of 10^{20} eV and 10^{13} eV, respectively. The puzzle of where and how Nature accelerates the highest energy cosmic particles is unresolved almost a century after their discovery. We will discuss how the cosmic ray connection sets the scale of the anticipated cosmic neutrino fluxes. In this context, we discuss the first results of the completed AMANDA detector and the science reach of its extension, IceCube.Comment: 13 pages, Latex2e, 3 postscript figures included. Talk presented at the International Workshop on Energy Budget in the High Energy Universe, Kashiwa, Japan, February 200

    The clustering of ultra-high energy cosmic rays and their sources

    Full text link
    The sky distribution of cosmic rays with energies above the 'GZK cutoff' holds important clues to their origin. The AGASA data, although consistent with isotropy, shows evidence for small-angle clustering, and it has been argued that such clusters are aligned with BL Lacertae objects, implicating these as sources. It has also been suggested that clusters can arise if the cosmic rays come from the decays of very massive relic particles in the Galactic halo, due to the expected clumping of cold dark matter. We examine these claims and show that both are in fact not justified.Comment: 13 pages, 8 figures, version in press at Phys. Rev.

    Anisotropy at the end of the cosmic ray spectrum?

    Full text link
    The starburst galaxies M82 and NGC253 have been proposed as the primary sources of cosmic rays with energies above 1018.710^{18.7} eV. For energies \agt 10^{20.3} eV the model predicts strong anisotropies. We calculate the probabilities that the latter can be due to chance occurrence. For the highest energy cosmic ray events in this energy region, we find that the observed directionality has less than 1% probability of occurring due to random fluctuations. Moreover, during the first 5 years of operation at Auger, the observation of even half the predicted anisotropy has a probability of less than 10−510^{-5} to occur by chance fluctuation. Thus, this model can be subject to test at very small cost to the Auger priors budget and, whatever the outcome of that test, valuable information on the Galactic magnetic field will be obtained.Comment: Final version to be published in Physical Review

    Gamma-Ray Bursts: The Underlying Model

    Full text link
    A pedagogical derivation is presented of the ``fireball'' model of gamma-ray bursts, according to which the observable effects are due to the dissipation of the kinetic energy of a relativistically expanding wind, a ``fireball.'' The main open questions are emphasized, and key afterglow observations, that provide support for this model, are briefly discussed. The relativistic outflow is, most likely, driven by the accretion of a fraction of a solar mass onto a newly born (few) solar mass black hole. The observed radiation is produced once the plasma has expanded to a scale much larger than that of the underlying ``engine,'' and is therefore largely independent of the details of the progenitor, whose gravitational collapse leads to fireball formation. Several progenitor scenarios, and the prospects for discrimination among them using future observations, are discussed. The production in gamma- ray burst fireballs of high energy protons and neutrinos, and the implications of burst neutrino detection by kilometer-scale telescopes under construction, are briefly discussed.Comment: In "Supernovae and Gamma Ray Bursters", ed. K. W. Weiler, Lecture Notes in Physics, Springer-Verlag (in press); 26 pages, 2 figure

    Sensitivity of the IceCube Detector to Astrophysical Sources of High Energy Muon Neutrinos

    Full text link
    We present the results of a Monte-Carlo study of the sensitivity of the planned IceCube detector to predicted fluxes of muon neutrinos at TeV to PeV energies. A complete simulation of the detector and data analysis is used to study the detector's capability to search for muon neutrinos from sources such as active galaxies and gamma-ray bursts. We study the effective area and the angular resolution of the detector as a function of muon energy and angle of incidence. We present detailed calculations of the sensitivity of the detector to both diffuse and pointlike neutrino emissions, including an assessment of the sensitivity to neutrinos detected in coincidence with gamma-ray burst observations. After three years of datataking, IceCube will have been able to detect a point source flux of E^2*dN/dE = 7*10^-9 cm^-2s^-1GeV at a 5-sigma significance, or, in the absence of a signal, place a 90% c.l. limit at a level E^2*dN/dE = 2*10^-9 cm^-2s^-1GeV. A diffuse E-2 flux would be detectable at a minimum strength of E^2*dN/dE = 1*10^-8 cm^-2s^-1sr^-1GeV. A gamma-ray burst model following the formulation of Waxman and Bahcall would result in a 5-sigma effect after the observation of 200 bursts in coincidence with satellite observations of the gamma-rays.Comment: 33 pages, 13 figures, 6 table

    Cosmic Neutrinos from the Sources of Galactic and Extragalactic Cosmic Rays

    Get PDF
    Although kilometer-scale neutrino detectors such as IceCube are discovery instruments, their conceptual design is very much anchored to the observational fact that Nature produces protons and photons with energies in excess of 10^20 eV and 10^13 eV, respectively. The puzzle of where and how Nature accelerates the highest energy cosmic particles is unresolved almost a century after their discovery. From energetics considerations we anticipate order 10~100 neutrino events per kilometer squared per year pointing back at the source(s) of both galactic and extragalactic cosmic rays. In this context, we discuss the results of the AMANDA and IceCube neutrino telescopes which will deliver a kilometer-square-year of data over the next 3 years.Comment: 8 pages, 4 figure

    All-sky search for periodic gravitational waves in the O1 LIGO data

    Get PDF
    We report on an all-sky search for periodic gravitational waves in the frequency band 20-475 Hz and with a frequency time derivative in the range of [-1.0,+0.1]×10-8 Hz/s. Such a signal could be produced by a nearby spinning and slightly nonaxisymmetric isolated neutron star in our galaxy. This search uses the data from Advanced LIGO\u27s first observational run, O1. No periodic gravitational wave signals were observed, and upper limits were placed on their strengths. The lowest upper limits on worst-case (linearly polarized) strain amplitude h0 are ∼4×10-25 near 170 Hz. For a circularly polarized source (most favorable orientation), the smallest upper limits obtained are ∼1.5×10-25. These upper limits refer to all sky locations and the entire range of frequency derivative values. For a population-averaged ensemble of sky locations and stellar orientations, the lowest upper limits obtained for the strain amplitude are ∼2.5×10-25

    Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    Get PDF
    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.Comment: Submitted to Physics Letters

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe
    • …
    corecore