963 research outputs found

    Radiative Transfer for Exoplanet Atmospheres

    Full text link
    Remote sensing of the atmospheres of distant worlds motivates a firm understanding of radiative transfer. In this review, we provide a pedagogical cookbook that describes the principal ingredients needed to perform a radiative transfer calculation and predict the spectrum of an exoplanet atmosphere, including solving the radiative transfer equation, calculating opacities (and chemistry), iterating for radiative equilibrium (or not), and adapting the output of the calculations to the astronomical observations. A review of the state of the art is performed, focusing on selected milestone papers. Outstanding issues, including the need to understand aerosols or clouds and elucidating the assumptions and caveats behind inversion methods, are discussed. A checklist is provided to assist referees/reviewers in their scrutiny of works involving radiative transfer. A table summarizing the methodology employed by past studies is provided.Comment: 7 pages, no figures, 1 table. Filled in missing information in references, main text unchange

    Adverse drug reaction with midazolam use in Emergency Department

    Get PDF
    Midazolam is one of the most commonly used drugs for sedation in Emergency Department (ED). This was a retrospective study conducted on 380 patients from December 2012 to May 2014 in ED of Universiti Kebangsaan Malaysia Medical Centre (UKMMC). The objective was to elicit the frequency of side effects and correlation to various factors i.e. socio-demography, co-morbidities, age groups and underlying illnesses. Out of 380 patients, 35 patients experienced side effects (20 patients with midazolam alone, 15 patients with combination of drugs). The average age was 42 years and the average dose of midazolam was 3.5mg. The most common other drug combined was fentanyl. The overall complication rate for midazolam was 5.3%. The most common side effect recorded was excessive somnolence (1.6%). Other side effects included local skin reactions (1.1%), vomiting (0.8%), headache (0.8%) and hypotension (0.5%). There was no significant association between the socio-demographic factors and drugs combination with the side effects of midazolam on patients. It was concluded that midazolam was a safe drug due to absence of any life-threatening side effects. There are possibilities that most side effects recorded could be caused by other comfounding factors e.g. underlying injuries or disease and combination with other drugs

    A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM

    Full text link
    Motivated by the recent LHC hints of a Higgs boson around 125 GeV, we assume a SM-like Higgs with the mass 123-127 GeV and study its implication in low energy SUSY by comparing the MSSM and NMSSM. We consider various experimental constraints at 2-sigma level (including the muon g-2 and the dark matter relic density) and perform a comprehensive scan over the parameter space of each model. Then in the parameter space which is allowed by current experimental constraints and also predicts a SM-like Higgs in 123-127 GeV, we examine the properties of the sensitive parameters (like the top squark mass and the trilinear coupling A_t) and calculate the rates of the di-photon signal and the VV^* (V=W,Z) signals at the LHC. Our typical findings are: (i) In the MSSM the top squark and A_t must be large and thus incur some fine-tuning, which can be much ameliorated in the NMSSM; (ii) In the MSSM a light stau is needed to enhance the di-photon rate of the SM-like Higgs to exceed its SM prediction, while in the NMSSM the di-photon rate can be readily enhanced in several ways; (iii) In the MSSM the signal rates of pp -> h -> VV^* at the LHC are never enhanced compared with their SM predictions, while in the NMSSM they may get enhanced significantly; (iv) A large part of the parameter space so far survived will be soon covered by the expected XENON100(2012) sensitivity (especially for the NMSSM).Comment: Version in JHEP (refs added

    Androgen receptor phosphorylation at serine 515 by Cdk1 predicts biochemical relapse in prostate cancer patients

    Get PDF
    <br>Background:Prostate cancer cell growth is dependent upon androgen receptor (AR) activation, which is regulated by specific kinases. The aim of the current study is to establish if AR phosphorylation by Cdk1 or ERK1/2 is of prognostic significance.</br> <br>Methods: Scansite 2.0 was utilised to predict which AR sites are phosphorylated by Cdk1 and ERK1/2. Immunohistochemistry for these sites was then performed on 90 hormone-naive prostate cancer specimens. The interaction between Cdk1/ERK1/2 and AR phosphorylation was investigated in vitro using LNCaP cells.</br><br>Results:Phosphorylation of AR at serine 515 (pAR(S515)) and PSA at diagnosis were independently associated with decreased time to biochemical relapse. Cdk1 and pCdk1(161), but not ERK1/2, correlated with pAR(S515). High expression of pAR(S515) in patients with a PSA at diagnosis of ≤20 ng ml(-1) was associated with shorter time to biochemical relapse (P=0.019). This translated into a reduction in disease-specific survival (10-year survival, 38.1% vs 100%, P<0.001). In vitro studies demonstrated that treatment with Roscovitine (a Cdk inhibitor) caused a reduction in pCdk1(161) expression, pAR(S515)expression and cellular proliferation.</br> <br>Conclusion: In prostate cancer patients with PSA at diagnosis of ≤20 ng ml(-1), phosphorylation of AR at serine 515 by Cdk1 may be an independent prognostic marker.</br&gt

    MASEP gamma knife radiosurgery for secretory pituitary adenomas: experience in 347 consecutive cases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Secretory pituitary adenomas are very common brain tumors. Historically, the treatment armamentarium for secretory pituitary adenomas included neurosurgery, medical management, and fractionated radiotherapy. In recent years, MASEP gamma knife radiosurgery (MASEP GKRS) has emerged as an important treatment modality in the management of secretory pituitary adenomas. The goal of this research is to define accurately the efficacy, safety, complications, and role of MASEP GKRS for treatment of secretory pituitary adenomas.</p> <p>Methods</p> <p>Between 1997 and 2007 a total of 347 patients with secretory pituitary adenomas treated with MASEP GKRS and with at least 60 months of follow-up data were identified. In 47 of these patients some form of prior treatment such as transsphenoidal resection, or craniotomy and resection had been conducted. The others were deemed ineligible for microsurgery because of body health or private choice, and MASEP GKRS served as the primary treatment modality. Endocrinological, ophthalmological, and neuroradiological responses were evaluated.</p> <p>Results</p> <p>MASEP GKRS was tolerated well in these patients under the follow-up period ranged from 60 to 90 months; acute radioreaction was rare and 17 patients had transient headaches with no clinical significance. Late radioreaction was noted in 1 patient and consisted of consistent headache. Of the 68 patients with adrenocorticotropic hormone-secreting(ACTH) adenomas, 89.7% showed tumor volume decrease or remain unchanged and 27.9% experienced normalization of hormone level. Of the 176 patients with prolactinomas, 23.3% had normalization of hormone level and 90.3% showed tumor volume decrease or remain unchanged. Of the 103 patients with growth hormone-secreting(GH) adenomas, 95.1% experienced tumor volume decrease or remain unchanged and 36.9% showed normalization of hormone level.</p> <p>Conclusion</p> <p>MASEP GKRS is safe and effective in treating secretory pituitary adenomas. None of the patients in our study experienced injury to the optic apparatus or had other neuropathies related with gamma knife. MASEP GKRS may serve as a primary treatment method in some or as a salvage treatment in the others. However, treatment must be tailored to meet the patient's symptoms, tumor location, tumor morphometry, and overall health. Longer follow-up is required for a more complete assessment of late radioreaction and treatment efficacy.</p

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
    corecore