480 research outputs found

    Predicting Distribution of Aedes Aegypti and Culex Pipiens Complex, Potential Vectors of Rift Valley Fever Virus in Relation to Disease Epidemics in East Africa.

    Get PDF
    The East African region has experienced several Rift Valley fever (RVF) outbreaks since the 1930s. The objective of this study was to identify distributions of potential disease vectors in relation to disease epidemics. Understanding disease vector potential distributions is a major concern for disease transmission dynamics. DIVERSE ECOLOGICAL NICHE MODELLING TECHNIQUES HAVE BEEN DEVELOPED FOR THIS PURPOSE: we present a maximum entropy (Maxent) approach for estimating distributions of potential RVF vectors in un-sampled areas in East Africa. We modelled the distribution of two species of mosquitoes (Aedes aegypti and Culex pipiens complex) responsible for potential maintenance and amplification of the virus, respectively. Predicted distributions of environmentally suitable areas in East Africa were based on the presence-only occurrence data derived from our entomological study in Ngorongoro District in northern Tanzania. Our model predicted potential suitable areas with high success rates of 90.9% for A. aegypti and 91.6% for C. pipiens complex. Model performance was statistically significantly better than random for both species. Most suitable sites for the two vectors were predicted in central and northwestern Tanzania with previous disease epidemics. Other important risk areas include western Lake Victoria, northern parts of Lake Malawi, and the Rift Valley region of Kenya. Findings from this study show distributions of vectors had biological and epidemiological significance in relation to disease outbreak hotspots, and hence provide guidance for the selection of sampling areas for RVF vectors during inter-epidemic periods

    An Alternative Yukawa Unified SUSY Scenario

    Full text link
    Supersymmetric SO(10) Grand Unified Theories with Yukawa unification represent an appealing possibility for physics beyond the Standard Model. However Yukawa unification is made difficult by large threshold corrections to the bottom mass. Generally one is led to consider models where the sfermion masses are large in order to suppress these corrections. Here we present another possibility, in which the top and bottom GUT scale Yukawa couplings are equal to a component of the charged lepton Yukawa matrix at the GUT scale in a basis where this matrix is not diagonal. Physically, this weak eigenstate Yukawa unification scenario corresponds to the case where the charged leptons that are in the 16 of SO(10) containing the top and bottom quarks mix with their counterparts in another SO(10) multiplet. Diagonalizing the resulting Yukawa matrix introduces mixings in the neutrino sector. Specifically we find that for a large region of parameter space with relatively light sparticles, and which has not been ruled out by current LHC or other data, the mixing induced in the neutrino sector is such that sin22Θ231sin^2 2\Theta_{23} \approx 1, in agreement with data. The phenomenological implications are analyzed in some detail.Comment: 32 pages, 22 Figure

    Tic disorders and the premonitory urge

    Get PDF
    The aims of this study were to examine a non-English (Hebrew) version of a scale that measures the premonitory urge in children suffering from tic disorder, as well as examine the correlations of the urge with demographic and clinical aspects of Tourette Syndrome. Forty children and adolescents, suffering from tics participated in this study. They were assessed with the Premonitory Urge for Tics Scale (PUTS); the Yale Global Tic Severity Scale (YGTSS); the Childhood Version of the Yale Brown Obsessive Compulsive Scale (CYBOCS); the ADHD Rating Scale IV (Conners) Scale; the Screen for Child Anxiety Related Emotional Disorders (SCARED); and the Child Depression Inventory (CDI). The mean PUTS score was 20.15 (SD = 5.89). For the entire sample the PUTS was found to be internally consistent at a = 0.79. Youths older than 10 years had higher consistency (a = 0.83) than youths younger than 10 (a = 0.69). Premonitory urge was not correlated with tic severity in the entire sample. In youths older than 10, as opposed to youths younger than 10, premonitory urge did correlate with obsessions, compulsions and depression, but not with anxiety or with ADHD. The premonitory urge can be measured reliably and the PUTS is a useful instrument for measuring this important phenomena. Premonitory urges seems to be related to obsessions, compulsions, and depression in older children and this may have implications for the developmental psychopatholgy of these symptoms

    Functional Role of the Polymorphic 647 T/C Variant of ENT1 (SLC29A1) and Its Association with Alcohol Withdrawal Seizures

    Get PDF
    Adenosine is involved in several neurological and behavioral disorders including alcoholism. In cultured cell and animal studies, type 1 equilibrative nucleoside transporter (ENT1, slc29a1), which regulates adenosine levels, is known to regulate ethanol sensitivity and preference. Interestingly, in humans, the ENT1 (SLC29A1) gene contains a non-synonymous single nucleotide polymorphism (647 T/C; rs45573936) that might be involved in the functional change of ENT1. Our functional analysis showed that prolonged ethanol exposure increased adenosine uptake activity of mutant cells (ENT1-216Thr) compared to wild-type (ENT1-216Ile) transfected cells, which might result in reduced extracellular adenosine levels. We found that mice lacking ENT1 displayed increased propensity to ethanol withdrawal seizures compared to wild-type littermates. We further investigated a possible association of the 647C variant with alcoholism and the history of alcohol withdrawal seizures in subjects of European ancestry recruited from two independent sites. Analyses of the combined data set showed an association of the 647C variant and alcohol dependence with withdrawal seizures at the nominally significant level. Together with the functional data, our findings suggest a potential contribution of a genetic variant of ENT1 to the development of alcoholism with increased risk of alcohol withdrawal-induced seizures in humans

    Rational identification of a Cdc42 inhibitor presents a new regimen for long- term hematopoietic stem cell mobilization

    Get PDF
    Mobilization of hematopoietic stem cells (HSCs) from bone marrow (BM) to peripheral blood (PB) by cytokine granulocyte colony-stimulating factor (G-CSF) or the chemical antagonist of CXCR4, AMD3100, is important in the treatment of blood diseases. Due to clinical conditions of each application, there is a need for continued improvement of HSC mobilization regimens. Previous studies have shown that genetic ablation of the Rho GTPase Cdc42 in HSCs results in their mobilization without affecting survival. Here we rationally identified a Cdc42 activity-specific inhibitor (CASIN) that can bind to Cdc42 with submicromolar affinity and competitively interfere with guanine nucleotide exchange activity. CASIN inhibits intracellular Cdc42 activity specifically and transiently to induce murine hematopoietic stem/progenitor cell egress from the BM by suppressing actin polymerization, adhesion, and directional migration of stem/progenitor cells, conferring Cdc42 knockout phenotypes. We further show that, although, CASIN administration to mice mobilizes similar number of phenotypic HSCs as AMD3100, it produces HSCs with better long-term reconstitution potential than that by AMD3100. Our work validates a specific small molecule inhibitor for Cdc42, and demonstrates that signaling molecules downstream of cytokines and chemokines, such as Cdc42, constitute a useful target for long-term stem cell mobilization

    Antibiotic consumption and antimicrobial resistance in Poland; findings and implications

    Get PDF
    Background: The problem of inappropriate use of antibiotics and the resulting growth in antimicrobial resistance (AMR) has implications for Poland and the world. The objective of this paper was to compare and contrast antibiotic resistance and antibiotic utilisation in Poland in recent years versus other European countries, including agreed quality indicators, alongside current AMR patterns and ongoing policies and initiatives in Poland to influence and improve antibiotic prescribing. Methods: A quantitative ten-year analysis (2007-2016) of the use of antibiotics based on European Centre for Disease Prevention and Control (ECDC) data combined with a literature review on AMR rates and antimicrobial stewardship initiatives. Results: The system of monitoring AMR and appropriate strategies to address AMR rates remain underdeveloped in Poland. The role of microbiological diagnostics and efforts to prevent infections is currently underestimated by physicians. Overall, Poland had one of the highest rates of total consumption of antibiotics in the analysed European countries. Total consumption of antibacterials for systemic use and relative consumption of beta-lactamase sensitive penicillins were characterized by small but statistically significant average annual increases between 2007 and 2016 (from 22.2DIDs to 23.9 DIDs and from 0.8% to 1.3%, respectively). Conclusions: The integrated activities around appropriate antibiotic prescribing in the pre- and post-graduate training of physicians and dentists seem to be particularly important, as well as changes in policies on prescribing antibiotics within ambulatory care. AMR and appropriate prescribing of antibiotics should be the focus of health policy actions in Poland

    Cofactor-mediated conformational control in the bifunctional kinase/RNase Ire1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ire1 is a signal transduction protein in the endoplasmic reticulum (ER) membrane that serves to adjust the protein-folding capacity of the ER according to the needs of the cell. Ire1 signals, in a transcriptional program, the unfolded protein response (UPR) via the coordinated action of its protein kinase and RNase domains. In this study, we investigated how the binding of cofactors to the kinase domain of Ire1 modulates its RNase activity.</p> <p>Results</p> <p>Our results suggest that the kinase domain of Ire1 initially binds cofactors without activation of the RNase domain. RNase is activated upon a subsequent conformational rearrangement of Ire1 governed by the chemical properties of bound cofactors. The conformational step can be selectively inhibited by chemical perturbations of cofactors. Substitution of a single oxygen atom in the terminal β-phosphate group of a potent cofactor ADP by sulfur results in ADPβS, a cofactor that binds to Ire1 as well as to ADP but does not activate RNase. RNase activity can be rescued by thiophilic metal ions such as Mn<sup>2+ </sup>and Cd<sup>2+</sup>, revealing a functional metal ion-phosphate interaction which controls the conformation and RNase activity of the Ire1 ADP complex. Mutagenesis of the kinase domain suggests that this rearrangement involves movement of the αC-helix, which is generally conserved among protein kinases. Using X-ray crystallography, we show that oligomerization of Ire1 is sufficient for placing the αC-helix in the active, cofactor-bound-like conformation, even in the absence of cofactors.</p> <p>Conclusions</p> <p>Our structural and biochemical evidence converges on a model that the cofactor-induced conformational change in Ire1 is coupled to oligomerization of the receptor, which, in turn, activates RNase. The data reveal that cofactor-Ire1 interactions occur in two independent steps: binding of a cofactor to Ire1 and subsequent rearrangement of Ire1 resulting in its self-association. The pronounced allosteric effect of cofactors on protein-protein interactions involving Ire1's kinase domain suggests that protein kinases and pseudokinases encoded in metazoan genomes may use ATP pocket-binding ligands similarly to exert signaling roles other than phosphoryl transfer.</p

    BPR1K653, a Novel Aurora Kinase Inhibitor, Exhibits Potent Anti-Proliferative Activity in MDR1 (P-gp170)-Mediated Multidrug-Resistant Cancer Cells

    Get PDF
    Over-expression of Aurora kinases promotes the tumorigenesis of cells. The aim of this study was to determine the preclinical profile of a novel pan-Aurora kinase inhibitor, BPR1K653, as a candidate for anti-cancer therapy. Since expression of the drug efflux pump, MDR1, reduces the effectiveness of various chemotherapeutic compounds in human cancers, this study also aimed to determine whether the potency of BPR1K653 could be affected by the expression of MDR1 in cancer cells.BPR1K653 specifically inhibited the activity of Aurora-A and Aurora-B kinase at low nano-molar concentrations in vitro. Anti-proliferative activity of BPR1K653 was evaluated in various human cancer cell lines. Results of the clonogenic assay showed that BPR1K653 was potent in targeting a variety of cancer cell lines regardless of the tissue origin, p53 status, or expression of MDR1. At the cellular level, BPR1K653 induced endo-replication and subsequent apoptosis in both MDR1-negative and MDR1-positive cancer cells. Importantly, it showed potent activity against the growth of xenograft tumors of the human cervical carcinoma KB and KB-derived MDR1-positive KB-VIN10 cells in nude mice. Finally, BPR1K653 also exhibited favorable pharmacokinetic properties in rats.BPR1K653 is a novel potent anti-cancer compound, and its potency is not affected by the expression of the multiple drug resistant protein, MDR1, in cancer cells. Therefore, BPR1K653 is a promising anti-cancer compound that has potential for the management of various malignancies, particularly for patients with MDR1-related drug resistance after prolonged chemotherapeutic treatments
    corecore