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Hematopoietic stem cell transplantation (HSCT) has become a standard of care for the 

treatment of many hematological disorders [1, 2]. However, current myeloablative 

conditioning regimens are associated with significant morbidity and mortality [1]. In 

addition, outcomes of transplantation can be suboptimal owing to limiting stem cell 

numbers, especially in umbilical cord blood (UCB) transplantation [1] or autologous 

transplantation [2]. Thus, novel means that optimize the engraftment of hematopoietic stem 

cells (HSCs) in the bone marrow (BM) of transplant recipients with attenuated toxicities are 

needed to maximize the benefits of HSCT.

Engraftment is a process of competition between endogenous and infused donor HSCs in the 

BM niche, the primary residence of HSCs [3]. In HSCT, engraftment of transplanted donor 

stem cells is often limited by the availability of BM niches normally occupied by host HSCs 

[3, 4]. Traditional myeloablative conditioning makes niche available by non-specifically 

destroying endogenous HSCs and disrupting niche structures [5]. Several studies have 

shown that depletion of host HSCs in a directed fashion could vacate BM niches and 

facilitate engraftment of donor HSCs [4–8]. However, the clinical utility of HSC 

mobilization agents, such as the cytokine granulocyte colony-stimulating factor (G-CSF) or 

the CXCR4 antagonist AMD3100, does not improve niche availability, probably owing to 

their concomitant pro-proliferative activity, resulting in rapid reoccupation of the BM niches 

by donor HSCs [9, 10].
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We previously showed that conditional knockout of the Rho GTPase Cdc42 in murine HSCs 

led to defective F-actin polymerization, reduced adhesion to fibronectin matrix or stroma 

cells, and a massive egress of hematopoietic stem/progenitor cells (HSPCs) from BM [11]. 

More recently, we rationally identified a Cdc42 activity specific inhibitor, CASIN, that 

directly acts on the guanine nucleotide exchange site of Cdc42, specifically inhibits 

intracellular Cdc42 activity, and transiently induces murine HSC mobilization by 

suppressing actin polymerization, cell polarity, adhesion, and directional migration of HSCs, 

conferring Cdc42 knockout phenotypes [12].

To test whether Cdc42 targeting could allow access to functional niches in the BM, we first 

performed BM transplantation with WT BM cells and assessed donor engraftment after 

conditional deletion of Cdc42 in recipient HSCs (Fig. 1a). Four months post transplantation, 

donor engraftment in Cdc42-deleted hosts were significantly higher in both BM and 

peripheral blood (PB) than Cdc42+/+ host mice (Fig. 1b, left). The chimera was found in all 

blood lineages including Lin−Sca1+c-Kit+ (LSK) compartment (Fig. 1b, right), indicating 

successful multi-lineage reconstitution. Secondary transplants demonstrated long-term (LT) 

repopulating capacity and multi-lineage differentiation of donor HSCs (Figure S1). Thus, 

CDC42 gene deletion in recipient mice allows access of donor HSCs to functional niche in 

the BM.

We reasoned that HSC mobilization by Cdc42 targeting may transiently vacate BM niche 

and facilitate the establishment of LT-donor chimerism upon HSCT. In support of this 

notion, we found that the Cdc42 inhibitor, CASIN [12], induced a transient decrease of 

phenotypic LT-HSCs (Lin−c-kit+ Sca1+IL7Rα−CD34−) in BM 2 h after CASIN 

administration (Fig. 1c), which returned to normal after 24 h (Fig. 1d). A transient reduction 

of HSCs in BM of CASIN-treated animals was further supported by a functional reduction 

of competitive repopulating HSC activity within BM isolated at the 2-h, but not the 24-h 

interval, after CASIN administration to the donors (Fig. 1e). We subsequently tested whether 

CASIN synergizes with commonly used Fludarabine (Flu)-based preparative regimen [13]. 

CASIN in combination with Flu allowed significantly higher engraftment of donor cells than 

CASIN or Flu alone (Fig. 1f), suggesting an additive effect of a combination of 

immunosuppressant with CASIN in establishing engraftment under reduced-intensity 

conditioning [13]. These data demonstrate that transient pharmacological inhibition of 

Cdc42 by CASIN can vacate functional BM niche and allows for LT-engraftment of donor 

HSCs, in part mimicking the effect of CDC42 gene deletion in HSCs.

CASIN significantly inhibited the downstream signaling of Cdc42 including PAK1, WASP, 

and a-PKC, mimicking that of Cdc42 knockdown in human primitive hematopoietic cells 

(Figure S2A). We then examined the effects of CASIN on mobilization of human 

hematopoietic cells by intrafemoral injection of CD34+ UCB cells into NSG mice [14]. We 

found that although G-CSF and CASIN had similar effect in mobilizing human CFU activity 

(Figure S2B), CASIN conditioning led to ~ 10-fold increase in human CFU progenitor 

mobilization relative to PBS control, whereas G-CSF alone did not show a conditioning 

advantage over the control (Figure S2C). These results indicate that CASIN is effective in 

mobilizing human blood stem/progenitor cells in xenograft mice without obvious 

cytotoxicity in the course of HSC mobilization (Figure S2D, S2E).
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Similar to murine hematopoietic progenitor cells, CASIN inhibited Cdc42 activity in CD34+ 

UCB progenitor cells without affecting Rac1 activity (Figure S3A) and blocked SDF-1α-

induced F-actin polymerization in a dose-dependent fashion without an additive effect in 

Cdc42 knockdown cells (Figure S3B). CASIN significantly reduced adhesion (Figure S3C, 

Left) and migratory activity (Figure S3D, left) of UCBs, similar to that seen with Cdc42 

knockdown (Figures S3C, S3D, right). These data suggest that CASIN is useful in 

selectively inhibiting Cdc42 activity in human blood progenitor cells. CASIN administration 

significantly mobilized human CD34+ hematopoietic progenitor cells to the PB 1 h after 

CASIN injection (Fig. 2a, left) and resulted in a ~ 10-fold increase in colony-forming 

progenitors compared with controls (Fig. 2a, right). Conditioning with CASIN facilitated 

subsequent engraftment of human blood progenitors in a transplant model that does not 

include myeloablation, as the overall engraftment of CD45+ UCB cells (Fig. 2b, left) and 

human CD34+ hematopoietic progenitors (Fig. 2b, right) at 4 months were significantly 

higher in the CASIN-conditioned recipients than those seen in the vehicle-treated group 

(Fig. 2b). These results show that pharmacological inhibition of Cdc42 promotes the 

engraftment of CD34+ UCB cells into recipients without myeloablation.

Fanconi anemia (FA) is a devastating BM failure syndrome characterized by decreased 

engraftment ability of HSCs and increased susceptibility to a variety of cellular stresses 

including DNA damage [15]. We found that CASIN could further inhibit Cdc42 activity, but 

not the closely related Rac1 activity, in Fanca−/− BM cells (Figure S4A). Correspondingly, 

CASIN mobilized significantly more colony-forming progenitors in Fanca−/− mice than in 

WT mice (Fig. 2c) and decreased LSK cells in the BM of Fanca−/− mice (Figure S4B). 

These data indicate that CASIN further decreases Cdc42 activity and enhances spontaneous 

BM HSPC mobilization of Fanca−/− mice. Furthermore, CASIN-conditioned mice showed 

significantly increased chimera relative to vehicle-control treated animals, with Fanca−/− 

mice, demonstrating an even greater engraftment than WT recipients, suggesting that 

CASIN may prove particularly useful in conditioning HSCT recipients with FA (Figure 

S4C).

Flu in combination with low-dose total body irradiation have shown a benefit in allogeneic 

HSCT for FA patients [13]. We found that CASIN in combination with Flu allowed 

significantly higher engraftment of donor cells in Fanca+/+ recipients than CASIN or Flu 

alone (Fig. 2d). The effect on engraftment was even greater in Fanca−/− recipients (Fig. 2d), 

suggesting that a CASIN-based conditioning regimen may be of value in facilitating 

engraftment of transplanted stem cells, and have particular efficacy in transplantation of FA 

patients.

To address the potential value of CASIN in gene therapy using autologous HSCs in FA [15], 

we tested the engraftment of gene-corrected Fanca−/− Lin− BM cells in CASIN-conditioned 

congenic mice. First, we found that CASIN enhanced the engraftment of FANCA-corrected 

Fanca−/− Lin− cells (Figures S5A, B) in BM of the recipients, to an extent comparable to that 

of WT donor cells (Fig. 2e). Second, 92.20 ± 4.5% of donor-derived cells in gene therapy 

group were FANCA-corrected eGFP+ cells, significantly higher than 52.97 ± 3.0% in the 

empty vector control group (Fig. 2e), indicating an engraftment advantage of gene-corrected 

Fanca−/−/FANCA cells over non-corrected ones. Importantly, we found that the gene-
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corrected Fanca−/−/FANCA stem cells were as effective as WT HSCs in engrafting in 

CASIN-conditioned Fanca−/− recipients (Fig. 2f). Furthermore, these gene-corrected Fanca
−/−/FANCA HSCs exhibited much higher donor engraftment in CASIN-conditioned Fanca
−/− recipients than in vehicle-treated group (Fig. 2f). These results indicate that CASIN 

treatment is useful in facilitating the engraftment of gene-corrected autologous HSCs of FA, 

similar to that of WT HSCs in allogeneic setting of HSCT.

Efficient delivery of HSCs to BM niche with minimum toxicity has been the goal of clinical 

HSCT as its first use in treating patients [1, 2, 5]. Appropriate preparative regimen is critical 

for a successful HSCT, and in the setting of non-malignant disease where eradication of 

malignant cells is not needed, sustained engraftment of donor cells with minimum toxicity is 

a goal. Conventional myeloablative regimens achieve optimal engraftment by non-

specifically destroying recipient HSCs as well as other BM components, and cause 

significant acute and chronic toxicity, and associated morbidity and mortality [3]. In 

addition, the related tissue damage caused by myeloablative regimens can contribute to the 

pro-inflammatory environment that may facilitate graft versus host disease and hinder 

engraftment in allo-HSCT [3, 5]. In the present study, we found that pharmacological 

inhibition of Cdc42 by CASIN could transiently phenocopy Cdc42 gene deletion in host 

mice to facilitate donor HSC engraftment without myeloablative conditioning. Our studies 

offer a novel conditioning regimen for HSCT by pharmacological targeting Cdc42 to 

transiently open up the recipient HSC BM niche, thus allowing potential applications for 

human stem cell and FA patient HSCT [1, 15] with reduced exposure to cytotoxic 

chemotherapy.
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Fig. 1. 
Cdc42 targeting opens BM niche. a, b A single dose of donor BM cell infusion effectively 

engrafts recipient mice upon deletion of Cdc42 in host BM. Recipient mice (Mx:Cre−/−; 

Cdc42flox/flox v.s. Mx: Cre+/+; Cdc42flox/flox) were injected with Poly I:C three times 1 day 

apart and transplanted with 2 × 107 congenic BM cells (CD45.1+) 1 day after the last 

injection a. Percentage of donor-derived chimerism (CD45.2+) in total BM cells (left panel) 

and LSK BM cells (right panel) of CASIN-treated BoyJ recipients (CD45.1+) v.s. vehicle 4 

months after transplantation b. Results are means plus or minus SD from three independent 
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experiments (n = 6 for each experimental group). *** p < 0.001. c–e CASIN administration 

phenocopies the effect of Cdc42 gene targeting in host mice to facilitate donor HSC 

engraftment. Relative changes in the number of phenotypic long term (LT)-HSC (Lin−IL-7R
−Sca1+c-kit+CD34−) and various progenitor subpopulations were measured in CASIN- or 

vehicle-treated mouse BM (1.2 mg/kg, IV) at 2 h c or 24 h d. Results are representative of 

three independent experiments (n = 4). * p < 0.05. The BM cells harvested from these donor 

mice (3 × 106) were competitively transplanted into BoyJ recipients (CD45.1+) at a 1:1 ratio 

with CD45.1+ BM cells, and the chimera were analyzed 10 months after the competitive 

transplantation e. Results are representative of three independent experiments (n = 8 for each 

recipient group). *** p < 0.001. f CASIN promotes LT-HSC engraftment and synergizes 

with Fludarabine in a non-myeloablative conditioning regimen. Two separate cohorts of 

syngeneic BoyJ recipient mice were conditioned with vehicle, CASIN (twice at 1.2 mg/Kg), 

Fludarabine (three times at 75 mg/kg, IP), or CASIN together with Fludarabine prior to 

transplantation with congenic CD45.2+ BM cells (5 × 106). Percentages of donor-derived 

mononuclear cells in the PB of the recipients were measured 4 months after transplantation. 

* p < 0.05; *** p < 0.001
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Fig. 2. 
CASIN application to human cord blood and FA transplantation. a CASIN mobilizes CD34+ 

HCB cells in xenografted NSG mice. CD34+ HCB cells were transplanted into sublethally 

irradiated NSG recipient mice. Four month later, xenografted mice were treated with CASIN 

(1.2 mg/kg, iv). Peripheral blood (PB) were then obtained at the indicated time points and 

subjected to Flow Cytometry analysis for hCD34. Relative fold increase of CD34+ HCB 

chimerism (left) plus or minus SD (n = 13 in CASIN groups and n = 10 in control group) 

and CFU-C numbers in PB of mice (right) are shown. n = 5 in CASIN group and four in 
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vehicle group. * p < 0.05. b CASIN enhances engraftment of CD34+ HCB cells in 

immunodeficient NSG mice without myeloablation. Recipient NSG mice were conditioned 

with vehicle or CASIN (1.2 mg/kg) 24 and 2 h prior to BM transplantation and then 

transplanted with 2 × 105 CD34+ HCB cells by intrafemoral injection. Percentages of donor-

derived human CD45+ in PB (left) or CD34+ in BM (right) were assessed by Flow 

Cytometry 4 months after transplantation. n = 5 per group. ** p < 0.01. c CASIN further 

increased spontaneous mobilization of Fanca−/− BM progenitors. WT or Fanca−/− mice were 

injected with CASIN (1.2 mg/kg, IP) or Vehicle, and 48 h later, PB from the treated mice 

were subjected to progenitor assay for CFU-C activity. Results are means plus or minus SD 

from three independent experiments (n = 9 per group). * p < 0.05; ** p < 0.01. d CASIN 

synergizes with Fludarabine (Flu) on HSC engraftment. Fanca+/+ and Fanca−/− recipients 

were conditioned with CASIN (1.2 mg/kg, IP, 24 and 2 h prior to BMT), Fludarabine (75 

mg/kg, i.p. administration, 72, 48, and 24 h prior to BMT) or CASIN plus Flu in parallel 

with vehicle controls, and then transplanted with congenic BM cells (5 × 106 cells/mouse). 

Percentages of donor-derived cells in BM of recipients were determined by Flow Cytometry 

analysis. Results are representative of three independent experiments (n = 6 per group). *** 

p < 0.005. e CASIN promotes engraftment of gene-corrected Fanca−/− HSCs in wild-type 

recipients. BoyJ recipients were pre-conditioned with vehicle or CASIN (twice at 1.2 mg/

kg), and transplanted with 2 × 105 Fanca−/− Lin− BM cells transduced with retrovirus 

expressing eGFP only (Vector) or FANCA. Four months later, PB cells from the transplanted 

mice were stained with antibodies against CD45.1 and CD45.2, and donor-derived CD45.2+ 

cells were gated and analyzed by flow cytometry for GFP-positive and GFP-negative cell 

populations. Note that > 90% of donor-derived cells in the CASIN group are gene-corrected 

(eGFP-positive) cells. f CASIN promotes engraftment of gene-corrected Fanca−/− HSCs in 

Fanca−/− recipients. Similar donor cells and conditioning regimens as in e were used except 

that the transplant recipients were either Fanca+/+ or Fanca−/− mice. Donor engraftments 

were assayed by FACS analysis of eGFP+ cells in the recipient BM 4 months posttransplant. 

Results are representative of three independent experiments (n = 6 per group). *** p < 0.005
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