2,251 research outputs found
Assessing students' experiences of teaching-learning environments and approaches to learning.:Validation of a questionnaire used in different countries and varying contexts.
Characterization of Shewanella oneidensis MtrC: a cell-surface decaheme cytochrome involved in respiratory electron transport to extracellular electron acceptors
MtrC is a decaheme c-type cytochrome associated with the outer cell membrane of Fe(III)-respiring species of the Shewanella genus. It is proposed to play a role in anaerobic respiration by mediating electron transfer to extracellular mineral oxides that can serve as terminal electron acceptors. The present work presents the first spectropotentiometric and voltammetric characterization of MtrC, using protein purified from Shewanella oneidensis MR-1. Potentiometric titrations, monitored by UV–vis absorption and electron paramagnetic resonance (EPR) spectroscopy, reveal that the hemes within MtrC titrate over a broad potential range spanning between approximately +100 and approximately -500 mV (vs. the standard hydrogen electrode). Across this potential window the UV–vis absorption spectra are characteristic of low-spin c-type hemes and the EPR spectra reveal broad, complex features that suggest the presence of magnetically spin-coupled low-spin c-hemes. Non-catalytic protein film voltammetry of MtrC demonstrates reversible electrochemistry over a potential window similar to that disclosed spectroscopically. The voltammetry also allows definition of kinetic properties of MtrC in direct electron exchange with a solid electrode surface and during reduction of a model Fe(III) substrate. Taken together, the data provide quantitative information on the potential domain in which MtrC can operate
A Vast Thin Plane of Co-rotating Dwarf Galaxies Orbiting the Andromeda Galaxy
Dwarf satellite galaxies are thought to be the remnants of the population of
primordial structures that coalesced to form giant galaxies like the Milky Way.
An early analysis noted that dwarf galaxies may not be isotropically
distributed around our Galaxy, as several are correlated with streams of HI
emission, and possibly form co-planar groups. These suspicions are supported by
recent analyses, and it has been claimed that the apparently planar
distribution of satellites is not predicted within standard cosmology, and
cannot simply represent a memory of past coherent accretion. However, other
studies dispute this conclusion. Here we report the existence (99.998%
significance) of a planar sub-group of satellites in the Andromeda galaxy,
comprising approximately 50% of the population. The structure is vast: at least
400 kpc in diameter, but also extremely thin, with a perpendicular scatter
<14.1 kpc (99% confidence). Radial velocity measurements reveal that the
satellites in this structure have the same sense of rotation about their host.
This finding shows conclusively that substantial numbers of dwarf satellite
galaxies share the same dynamical orbital properties and direction of angular
momentum, a new insight for our understanding of the origin of these most dark
matter dominated of galaxies. Intriguingly, the plane we identify is
approximately aligned with the pole of the Milky Way's disk and is co-planar
with the Milky Way to Andromeda position vector. The existence of such
extensive coherent kinematic structures within the halos of massive galaxies is
a fact that must be explained within the framework of galaxy formation and
cosmology.Comment: Published in the 3rd Jan 2013 issue of Nature. 19 pages, 4 figures, 1
three-dimensional interactive figure. To view and manipulate the 3-D figure,
an Adobe Reader browser plug-in is required; alternatively save to disk and
view with Adobe Reade
Vortices in (2+1)d Conformal Fluids
We study isolated, stationary, axially symmetric vortex solutions in
(2+1)-dimensional viscous conformal fluids. The equations describing them can
be brought to the form of three coupled first order ODEs for the radial and
rotational velocities and the temperature. They have a rich space of solutions
characterized by the radial energy and angular momentum fluxes. We do a
detailed study of the phases in the one-parameter family of solutions with no
energy flux. This parameter is the product of the asymptotic vorticity and
temperature. When it is large, the radial fluid velocity reaches the speed of
light at a finite inner radius. When it is below a critical value, the velocity
is everywhere bounded, but at the origin there is a discontinuity. We comment
on turbulence, potential gravity duals, non-viscous limits and non-relativistic
limits.Comment: 39 pages, 10 eps figures, v2: Minor changes, refs, preprint numbe
Water induced sediment levitation enhances downslope transport on Mars
On Mars, locally warm surface temperatures (~293 K) occur, leading to the possibility of (transient) liquid water on the surface. However, water exposed to the martian atmosphere will boil, and the sediment transport capacity of such unstable water is not well understood. Here, we present laboratory studies of a newly recognized transport mechanism: “levitation” of saturated sediment bodies on a cushion of vapor released by boiling. Sediment transport where this mechanism is active is about nine times greater than without this effect, reducing the amount of water required to transport comparable sediment volumes by nearly an order of magnitude. Our calculations show that the effect of levitation could persist up to ~48 times longer under reduced martian gravity. Sediment levitation must therefore be considered when evaluating the formation of recent and present-day martian mass wasting features, as much less water may be required to form such features than previously thought
Chromosomal-level assembly of the Asian Seabass genome using long sequence reads and multi-layered scaffolding
We report here the ~670 Mb genome assembly of the Asian seabass (Lates calcarifer), a tropical marine teleost. We used long-read sequencing augmented by transcriptomics, optical and genetic mapping along with shared synteny from closely related fish species to derive a chromosome-level assembly with a contig N50 size over 1 Mb and scaffold N50 size over 25 Mb that span ~90% of the genome. The population structure of L. calcarifer species complex was analyzed by re-sequencing 61 individuals representing various regions across the species' native range. SNP analyses identified high levels of genetic diversity and confirmed earlier indications of a population stratification comprising three clades with signs of admixture apparent in the South-East Asian population. The quality of the Asian seabass genome assembly far exceeds that of any other fish species, and will serve as a new standard for fish genomics
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Strong interface-induced spin-orbit coupling in graphene on WS2
Interfacial interactions allow the electronic properties of graphene to be
modified, as recently demonstrated by the appearance of satellite Dirac cones
in the band structure of graphene on hexagonal boron nitride (hBN) substrates.
Ongoing research strives to explore interfacial interactions in a broader class
of materials in order to engineer targeted electronic properties. Here we show
that at an interface with a tungsten disulfide (WS2) substrate, the strength of
the spin-orbit interaction (SOI) in graphene is very strongly enhanced. The
induced SOI leads to a pronounced low-temperature weak anti-localization (WAL)
effect, from which we determine the spin-relaxation time. We find that
spin-relaxation time in graphene is two-to-three orders of magnitude smaller on
WS2 than on SiO2 or hBN, and that it is comparable to the intervalley
scattering time. To interpret our findings we have performed first-principle
electronic structure calculations, which both confirm that carriers in
graphene-on-WS2 experience a strong SOI and allow us to extract a
spin-dependent low-energy effective Hamiltonian. Our analysis further shows
that the use of WS2 substrates opens a possible new route to access topological
states of matter in graphene-based systems.Comment: Originally submitted version in compliance with editorial guidelines.
Final version with expanded discussion of the relation between theory and
experiments to be published in Nature Communication
Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis
Most tumors exhibit increased glucose metabolism to lactate, however, the extent to which glucose-derived metabolic fluxes are used for alternative processes is poorly understood [1, 2]. Using a metabolomics approach with isotope labeling, we found that in some cancer cells a relatively large amount of glycolytic carbon is diverted into serine and glycine metabolism through phosphoglycerate dehydrogenase (PHGDH). An analysis of human cancers showed that PHGDH is recurrently amplified in a genomic region of focal copy number gain most commonly found in melanoma. Decreasing PHGDH expression impaired proliferation in amplified cell lines. Increased expression was also associated with breast cancer subtypes, and ectopic expression of PHGDH in mammary epithelial cells disrupted acinar morphogenesis and induced other phenotypic alterations that may predispose cells to transformation. Our findings show that the diversion of glycolytic flux into a specific alternate pathway can be selected during tumor development and may contribute to the pathogenesis of human cancer.National Institutes of Health (U.S.)National Cancer Institute (U.S.)Smith Family FoundationDamon Runyon Cancer Research FoundationBurroughs Wellcome Fun
Antimicrobial lubricant formulations containing poly(hydroxybenzene)-trimethoprim conjugates synthesized by tyrosinase
Poly(hydroxybenzene)-trimethoprim conjugates were prepared using methylparaben as substrate of the oxida- tive enzyme tyrosinase. MALDI-TOF MS analysis showed that the enzymatic oxidation of methylparaben alone leads to the poly(hydroxybenzene) formation. In the presence of tri- methoprim, the methylparaben tyrosinase oxidation leads poly(hydroxybenzene)-trimethoprim conjugates. All of these compounds were incorporated into lubricant hydroxyethyl cellulose/glycerol mixtures. Poly(hydroxybenzene)-trimetho- prim conjugates were the most effective phenolic structures against the bacterial growth reducing by 96 and 97 % of Escherichia coli and Staphylococcus epidermidis suspen- sions, respectively (after 24 h). A novel enzymatic strategy to produce antimicrobial poly(hydroxybenzene)-antibiotic conjugates is proposed here for a wide range of applications on the biomedical field.The authors Idalina Gonçalves and Cláudia
Botelho would like to acknowledge the NOVO project (FP7-HEALTH-
2011.2.3.1- 5) for funding. Loïc Hilliou acknowledges the financial support
by FCT – Foundation for Science and Technology, Portugal
(501100001871), through Grant PEst-C/CTM/LA0025/2013 - Strategic
Project - LA 25 - 2013–2014, and by Programa Operacional Regional
do Norte (ON.2) through the project BMatepro – Optimizing Materials
and Processes^, with reference NORTE-07-0124-FEDER-000037
FEDER COMPETE
- …
