1,570 research outputs found

    Age-period-cohort analysis for trends in body mass index in Ireland

    Get PDF
    Background: Obesity is a growing problem worldwide and can often result in a variety of negative health outcomes. In this study we aim to apply partial least squares (PLS) methodology to estimate the separate effects of age, period and cohort on the trends in obesity as measured by body mass index (BMI). Methods. Using PLS we will obtain gender specific linear effects of age, period and cohort on obesity. We also explore and model nonlinear relationships of BMI with age, period and cohort. We analysed the results from 7,796 men and 10,220 women collected through the SLAN (Surveys of Lifestyle, attitudes and Nutrition) in Ireland in the years 1998, 2002 and 2007. Results: PLS analysis revealed a positive period effect over the years. Additionally, men born later tended to have lower BMI (-0.026 kg·m-2 yr-1, 95% CI: -0.030 to -0.024) and older men had in general higher BMI (0.029 kg·m -2 yr-1, 95% CI: 0.026 to 0.033). Similarly for women, those born later had lower BMI (-0.025 kg·m-2 yr-1, 95% CI: -0.029 to -0.022) and older women in general had higher BMI (0.029 kg·m-2 yr-1, 95% CI: 0.025 to 0.033). Nonlinear analyses revealed that BMI has a substantial curvilinear relationship with age, though less so with birth cohort. Conclusion: We notice a generally positive age and period effect but a slightly negative cohort effect. Knowing this, we have a better understanding of the different risk groups which allows for effective public intervention measures to be designed and targeted for these specific population subgroups

    Cryptochrome Genes Are Highly Expressed in the Ovary of the African Clawed Frog, Xenopus tropicalis

    Get PDF
    Cryptochromes (CRYs) are flavoproteins sharing high homology with photolyases. Some of them have function(s) including transcription regulation in the circadian clock oscillation, blue-light photoreception for resetting the clock phase, and light-dependent magnetoreception. Vertebrates retain multiple sets of CRY or CRY-related genes, but their functions are yet unclear especially in the lower vertebrates. Although CRYs and the other circadian clock components have been extensively studied in the higher vertebrates such as mice, only a few model species have been studied in the lower vertebrates. In this study, we identified two CRYs, XtCRY1 and XtCRY2 in Xenopus tropicalis, an excellent experimental model species. Examination of tissue specificity of their mRNA expression by real-time PCR analysis revealed that both the XtCRYs showed extremely high mRNA expression levels in the ovary. The mRNA levels in the ovary were about 28-fold (XtCry1) and 48-fold (XtCry2) higher than levels in the next abundant tissues, the retina and kidney, respectively. For the functional analysis of the XtCRYs, we cloned circadian positive regulator XtCLOCK and XtBMAL1, and found circadian enhancer E-box in the upstream of XtPer1 gene. XtCLOCK and XtBMAL1 exhibited strong transactivation from the XtPer1 E-box element, and both the XtCRYs inhibited the XtCLOCK:XtBMAL1-mediated transactivation, thereby suggesting this element to drive the circadian transcription. These results revealed a conserved main feedback loop in the X. tropicalis circadian clockwork and imply a possible physiological importance of CRYs in the ovarian functions such as synthesis of steroid hormones and/or control of estrus cycles via the transcription regulation

    Genomes reveal selective sweeps in kiang and donkey for high-altitude adaptation

    Get PDF
    Over the last several hundred years, donkeys have adapted to high-altitude conditions on the Tibetan Plateau. Interestingly, the kiang, a closely related equid species, also inhabits this region. Previous reports have demonstrated the importance of specific genes and adaptive introgression in divergent lineages for adaptation to hypoxic conditions on the Tibetan Plateau. Here, we assessed whether donkeys and kiangs adapted to the Tibetan Plateau via the same or different biological pathways and whether adaptive introgression has occurred. We assembled a de novo genome from a kiang individual and analyzed the genomes of five kiangs and 93 donkeys (including 24 from the Tibetan Plateau). Our analyses suggested the existence of a strong hard selective sweep at the EPAS1 locus in kiangs. In Tibetan donkeys, however, another gene, i.e., EGLN1, was likely involved in their adaptation to high altitude. In addition, admixture analysis found no evidence for interspecific gene flow between kiangs and Tibetan donkeys. Our findings indicate that despite the short evolutionary time scale since the arrival of donkeys on the Tibetan Plateau, as well as the existence of a closely related species already adapted to hypoxia, Tibetan donkeys did not acquire adaptation via admixture but instead evolved adaptations via a different biological pathway

    Neutrophils in cancer: neutral no more

    Get PDF
    Neutrophils are indispensable antagonists of microbial infection and facilitators of wound healing. In the cancer setting, a newfound appreciation for neutrophils has come into view. The traditionally held belief that neutrophils are inert bystanders is being challenged by the recent literature. Emerging evidence indicates that tumours manipulate neutrophils, sometimes early in their differentiation process, to create diverse phenotypic and functional polarization states able to alter tumour behaviour. In this Review, we discuss the involvement of neutrophils in cancer initiation and progression, and their potential as clinical biomarkers and therapeutic targets

    Low glucose under hypoxic conditions induces unfolded protein response and produces reactive oxygen species in lens epithelial cells

    Get PDF
    Aging is enhanced by hypoxia and oxidative stress. As the lens is located in the hypoglycemic environment under hypoxia, aging lens with diabetes might aggravate these stresses. This study was designed to examine whether low glucose under hypoxic conditions induces the unfolded protein response (UPR), and also if the UPR then generates the reactive oxygen species (ROS) in lens epithelial cells (LECs). The UPR was activated within 1 h by culturing the human LECs (HLECs) and rat LECs in <1.5 mM glucose under hypoxic conditions. These conditions also induced the Nrf2-dependent antioxidant-protective UPR, production of ROS, and apoptosis. The rat LECs located in the anterior center region were the least susceptible to the UPR, whereas the proliferating LECs in the germinative zone were the most susceptible. Because the cortical lens fiber cells are differentiated from the LECs after the onset of diabetes, we suggest that these newly formed cortical fibers have lower levels of Nrf2, and are then oxidized resulting in cortical cataracts. Thus, low glucose and oxygen conditions induce the UPR, generation of ROS, and expressed the Nrf2 and Nrf2-dependent antioxidant enzymes at normal levels. But these cells eventually lose reduced glutathione (GSH) and induce apoptosis. The results indicate a new link between hypoglycemia under hypoxia and impairment of HLEC functions

    Negative Regulators of Insulin Signaling Revealed in a Genome-Wide Functional Screen

    Get PDF
    Type 2 diabetes develops due to a combination of insulin resistance and β-cell failure and current therapeutics aim at both of these underlying causes. Several negative regulators of insulin signaling are known and are the subject of drug discovery efforts. We sought to identify novel contributors to insulin resistance and hence potentially novel targets for therapeutic intervention.An arrayed cDNA library encoding 18,441 human transcripts was screened for inhibitors of insulin signaling and revealed known inhibitors and numerous potential novel regulators. The novel hits included proteins of various functional classes such as kinases, phosphatases, transcription factors, and GTPase associated proteins. A series of secondary assays confirmed the relevance of the primary screen hits to insulin signaling and provided further insight into their modes of action.Among the novel hits was PALD (KIAA1274, paladin), a previously uncharacterized protein that when overexpressed led to inhibition of insulin's ability to down regulate a FOXO1A-driven reporter gene, reduced upstream insulin-stimulated AKT phosphorylation, and decreased insulin receptor (IR) abundance. Conversely, knockdown of PALD gene expression resulted in increased IR abundance, enhanced insulin-stimulated AKT phosphorylation, and an improvement in insulin's ability to suppress FOXO1A-driven reporter gene activity. The present data demonstrate that the application of arrayed genome-wide screening technologies to insulin signaling is fruitful and is likely to reveal novel drug targets for insulin resistance and the metabolic syndrome

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
    corecore